Multiplicity of positive solutions for a Kirchhoff type problem without asymptotic conditions

IF 0.7 4区 数学 Q2 MATHEMATICS
X. Qian
{"title":"Multiplicity of positive solutions for a Kirchhoff type problem without asymptotic conditions","authors":"X. Qian","doi":"10.12775/tmna.2022.031","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the multiplicity of positive solutions for the following Kirchhoff type problem\n\\[\n\\begin{cases}\n-\\bigg({\\varepsilon}^2a+{\\varepsilon}b\\int_{\\mathbb{R}^3} |\\n u|^2dx\\bigg)\\Delta u+u=Q(x)|u|^{p-2}u, & x\\in\\mathbb{R}^3,\\\\\nu\\in H^1\\big(\\mathbb{R}^3\\big), \\quad u> 0, & x\\in\\mathbb{R}^3,\n\\end{cases}\n\\]\nwhere $\\varepsilon> 0$ is a small parameter, $a,b> 0$ are constants, $4< p< 6$, $Q$\n is a nonnegative continuous potential and does not satisfy any asymptotic condition.\n Combining Nehari manifold and concentration compactness principle, we study how the shape of the graph of $Q(x)$ affects the number of positive solutions.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with the multiplicity of positive solutions for the following Kirchhoff type problem \[ \begin{cases} -\bigg({\varepsilon}^2a+{\varepsilon}b\int_{\mathbb{R}^3} |\n u|^2dx\bigg)\Delta u+u=Q(x)|u|^{p-2}u, & x\in\mathbb{R}^3,\\ u\in H^1\big(\mathbb{R}^3\big), \quad u> 0, & x\in\mathbb{R}^3, \end{cases} \] where $\varepsilon> 0$ is a small parameter, $a,b> 0$ are constants, $4< p< 6$, $Q$ is a nonnegative continuous potential and does not satisfy any asymptotic condition. Combining Nehari manifold and concentration compactness principle, we study how the shape of the graph of $Q(x)$ affects the number of positive solutions.
无渐近条件的Kirchhoff型问题正解的多重性
本文研究了下述Kirchhoff型问题\[\begin{cases}-\bigg({\varepsilon}^2a+{\varepsilon}b\int_{\mathbb{R}^3} |\n u|^2dx\bigg)\Delta u+u=Q(x)|u|^{p-2}u, & x\in\mathbb{R}^3,\\u\in H^1\big(\mathbb{R}^3\big), \quad u> 0, & x\in\mathbb{R}^3,\end{cases}\]的正解的多重性,其中$\varepsilon> 0$是一个小参数,$a,b> 0$是常数,$4< p< 6$, $Q$是一个不满足任何渐近条件的非负连续势。结合Nehari流形和集中紧致原理,研究了$Q(x)$图的形状对正解个数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
57
审稿时长
>12 weeks
期刊介绍: Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信