The Influence of Geochemical Variation Among Globigerinoides ruber Individuals on Paleoceanographic Reconstructions

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
L. Kearns, Alex Searle-Barnes, G. Foster, J. A. Milton, C. Standish, T. Ezard
{"title":"The Influence of Geochemical Variation Among Globigerinoides ruber Individuals on Paleoceanographic Reconstructions","authors":"L. Kearns, Alex Searle-Barnes, G. Foster, J. A. Milton, C. Standish, T. Ezard","doi":"10.1029/2022PA004549","DOIUrl":null,"url":null,"abstract":"Variation among individuals within species is a biological precondition for co‐existence. Traditional geochemical analysis based on bulk averages facilitates rapid data gathering but necessarily means the loss of large amounts of potentially crucial information into variability within a given sample. As the sensitivity of geochemical analysis improves, it is now feasible to build sufficiently powerful datasets to investigate paleoclimatic variation at the level of individual specimens. Here, we investigate geochemical and morphological variation among the sensu stricto, sensu lato and sensu lato extreme subspecies of the workhorse extant planktic foraminifera Globigerinoides ruber. Our experimental design distinguishes between subspecies and intraspecific variability as well as the repeatability of laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS). We show that geochemical variability in Mg/Ca ratios is driven by differences in subspecies depth habitat and that ontogenetic trends in Mg/Ca ratios are evident in the final whorl, with the final chamber consistently showing depleted Mg/Ca. These ontogenetic trends are not driven by individual chamber or test size. The Mg/Ca value variance among individuals is ∼100 times higher than the variance among repeated laser spot analyses of single chambers, directing laboratory protocols towards the need to sample ecologically and environmentally homogeneous samples. Our results emphasize that we can use LA‐ICP‐MS to quantify how individual variability aggregates to bulk results, and highlights that, with sufficient sample sizes, it is possible to reveal how intraspecific variability alters geochemical inference.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2022PA004549","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Variation among individuals within species is a biological precondition for co‐existence. Traditional geochemical analysis based on bulk averages facilitates rapid data gathering but necessarily means the loss of large amounts of potentially crucial information into variability within a given sample. As the sensitivity of geochemical analysis improves, it is now feasible to build sufficiently powerful datasets to investigate paleoclimatic variation at the level of individual specimens. Here, we investigate geochemical and morphological variation among the sensu stricto, sensu lato and sensu lato extreme subspecies of the workhorse extant planktic foraminifera Globigerinoides ruber. Our experimental design distinguishes between subspecies and intraspecific variability as well as the repeatability of laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS). We show that geochemical variability in Mg/Ca ratios is driven by differences in subspecies depth habitat and that ontogenetic trends in Mg/Ca ratios are evident in the final whorl, with the final chamber consistently showing depleted Mg/Ca. These ontogenetic trends are not driven by individual chamber or test size. The Mg/Ca value variance among individuals is ∼100 times higher than the variance among repeated laser spot analyses of single chambers, directing laboratory protocols towards the need to sample ecologically and environmentally homogeneous samples. Our results emphasize that we can use LA‐ICP‐MS to quantify how individual variability aggregates to bulk results, and highlights that, with sufficient sample sizes, it is possible to reveal how intraspecific variability alters geochemical inference.
橡胶球藻个体地球化学变化对古海洋重建的影响
物种内部个体之间的变异是共同存在的生物学前提。基于整体平均值的传统地球化学分析有助于快速收集数据,但这必然意味着在给定样本中会因可变性而损失大量潜在的关键信息。随着地球化学分析灵敏度的提高,现在可以建立足够强大的数据集,在单个标本的水平上研究古气候变化。在这里,我们研究了现存浮游有孔虫Globigerinoides ruber的狭义、广义和广义极端亚种之间的地球化学和形态变化。我们的实验设计区分了亚种和种内变异性以及激光消融电感耦合等离子体质谱(LA‐ICP‐MS)的可重复性。我们表明,Mg/Ca比率的地球化学变化是由亚种深度栖息地的差异驱动的,并且Mg/Ca比值的个体发生趋势在最后一个轮生中是明显的,最后一个腔室始终显示Mg/Ca耗尽。这些个体发生的趋势不是由单个腔室或测试大小驱动的。个体之间的Mg/Ca值方差比单室重复激光点分析之间的方差高出约100倍,这指导了实验室方案对生态和环境均匀样本进行采样的需要。我们的研究结果强调,我们可以使用LA‐ICP‐MS来量化个体变异性如何聚集到整体结果,并强调,如果有足够的样本量,就有可能揭示种内变异性如何改变地球化学推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Paleoceanography and Paleoclimatology
Paleoceanography and Paleoclimatology Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.20
自引率
11.40%
发文量
107
期刊介绍: Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信