{"title":"Bridging the data gap: using remote sensing and open-access data for assessing sustainable groundwater use in Kumasi, Ghana","authors":"Estela Fernandes Potter, I. Monney, M. Rutten","doi":"10.2166/wcc.2023.261","DOIUrl":null,"url":null,"abstract":"\n \n Groundwater use has significantly increased in the rapidly urbanising city of Kumasi, Ghana. But there is a lack of understanding of whether the groundwater system can sustain the growing demand in the future amidst climate change and rapid urbanisation. Using remote sensing datasets and a water balance approach, this study estimated the groundwater recharge and assessed how urbanisation has affected its groundwater sustainability. Sustainability is investigated by comparing multi-annual groundwater withdrawals to long-term average annual replenishment. Results show that while groundwater recharge has decreased by 80% from 1986 to 2020, mainly due to substantial (63%) loss of permeable land, groundwater consumption has seen a six-fold increase. Groundwater consumption in 2020 exceeded the long-term average groundwater recharge by 2.2 Mm3, suggesting that the current groundwater use trends are unsustainable for future groundwater availability. Under a ‘business-as-usual’ scenario, a four-fold increase in groundwater consumption is predicted by 2050 while climate change and land cover changes may reduce groundwater recharge by 10 and 55%, respectively. Practical measures such as promoting artificial groundwater replenishment approaches, adopting low-impact development and instituting demand management measures must be implemented in the Metropolis. This should be informed by further studies to ascertain the exact condition of the groundwater.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2023.261","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Groundwater use has significantly increased in the rapidly urbanising city of Kumasi, Ghana. But there is a lack of understanding of whether the groundwater system can sustain the growing demand in the future amidst climate change and rapid urbanisation. Using remote sensing datasets and a water balance approach, this study estimated the groundwater recharge and assessed how urbanisation has affected its groundwater sustainability. Sustainability is investigated by comparing multi-annual groundwater withdrawals to long-term average annual replenishment. Results show that while groundwater recharge has decreased by 80% from 1986 to 2020, mainly due to substantial (63%) loss of permeable land, groundwater consumption has seen a six-fold increase. Groundwater consumption in 2020 exceeded the long-term average groundwater recharge by 2.2 Mm3, suggesting that the current groundwater use trends are unsustainable for future groundwater availability. Under a ‘business-as-usual’ scenario, a four-fold increase in groundwater consumption is predicted by 2050 while climate change and land cover changes may reduce groundwater recharge by 10 and 55%, respectively. Practical measures such as promoting artificial groundwater replenishment approaches, adopting low-impact development and instituting demand management measures must be implemented in the Metropolis. This should be informed by further studies to ascertain the exact condition of the groundwater.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.