Preservers of the p-power and the Wasserstein means on 2x2 matrices

IF 0.7 4区 数学 Q2 Mathematics
R. Simon, Dániel Virosztek
{"title":"Preservers of the p-power and the Wasserstein means on 2x2 matrices","authors":"R. Simon, Dániel Virosztek","doi":"10.13001/ela.2023.7679","DOIUrl":null,"url":null,"abstract":"In one of his recent papers, Molnár showed that if $\\mathcal{A}$ is a von Neumann algebra without $I_1, I_2$-type direct summands, then any function from the positive definite cone of $\\mathcal{A}$ to the positive real numbers preserving the Kubo-Ando power mean, for some $0 \\neq p \\in (-1,1),$ is necessarily constant. It was shown in that paper that $I_1$-type algebras admit nontrivial $p$-power mean preserving functionals, and it was conjectured that $I_2$-type algebras admit only constant $p$-power mean preserving functionals. We confirm the latter. A similar result occurred in another recent paper of Molnár concerning the Wasserstein mean. We prove the conjecture for $I_2$-type algebras in regard of the Wasserstein mean, too. We also give two conditions that characterise centrality in $C^*$-algebras.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7679","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In one of his recent papers, Molnár showed that if $\mathcal{A}$ is a von Neumann algebra without $I_1, I_2$-type direct summands, then any function from the positive definite cone of $\mathcal{A}$ to the positive real numbers preserving the Kubo-Ando power mean, for some $0 \neq p \in (-1,1),$ is necessarily constant. It was shown in that paper that $I_1$-type algebras admit nontrivial $p$-power mean preserving functionals, and it was conjectured that $I_2$-type algebras admit only constant $p$-power mean preserving functionals. We confirm the latter. A similar result occurred in another recent paper of Molnár concerning the Wasserstein mean. We prove the conjecture for $I_2$-type algebras in regard of the Wasserstein mean, too. We also give two conditions that characterise centrality in $C^*$-algebras.
2x2矩阵上p-幂的保持器和Wasserstein均值
在他最近的一篇论文Molnár中,证明了如果$\mathcal{A}$是一个没有$I_1, I_2$型直接和的von Neumann代数,那么从$\mathcal{A}$的正定锥到保Kubo-Ando幂均值的正实数的任何函数,对于$0 \neq p \ In(-1,1),$必然是常数。证明了$I_1$型代数承认有非平凡的$p$幂均值保持泛函,并推测$I_2$型代数只承认有常数的$p$幂均值保持泛函。我们确认后者。在最近的另一篇关于沃瑟斯坦平均值的论文Molnár中也出现了类似的结果。我们还证明了$I_2$型代数关于Wasserstein均值的猜想。我们还给出了C^*$-代数中心性的两个条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信