{"title":"Global well-posedness and scattering for the defocusing cubic Schrödinger equation on waveguide ℝ2 × 𝕋2","authors":"Zehua Zhao","doi":"10.1142/S0219891619500048","DOIUrl":null,"url":null,"abstract":"We consider the problem of large data scattering for the defocusing cubic nonlinear Schrödinger equation on [Formula: see text]. This equation is critical both at the level of energy and mass. The key ingredients are global-in-time Stricharz estimate, resonant system approximation, profile decomposition and energy induction method. Assuming the large data scattering for the 2d cubic resonant system, we prove the large data scattering for this problem. This problem is the cubic analogue of a problem studied by Hani and Pausader.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S0219891619500048","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219891619500048","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7
Abstract
We consider the problem of large data scattering for the defocusing cubic nonlinear Schrödinger equation on [Formula: see text]. This equation is critical both at the level of energy and mass. The key ingredients are global-in-time Stricharz estimate, resonant system approximation, profile decomposition and energy induction method. Assuming the large data scattering for the 2d cubic resonant system, we prove the large data scattering for this problem. This problem is the cubic analogue of a problem studied by Hani and Pausader.
期刊介绍:
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:
Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.
Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.
General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.
Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.