A generalization of functional limit theorems on the Riemann zeta process

IF 0.5 4区 数学 Q3 MATHEMATICS
Satoshi Takanobu
{"title":"A generalization of functional limit theorems on the Riemann zeta process","authors":"Satoshi Takanobu","doi":"10.18910/73631","DOIUrl":null,"url":null,"abstract":"$\\zeta(\\cdot)$ being the Riemann zeta function, $\\zeta_{\\sigma}(t) := \\frac{\\zeta(\\sigma + i t)}{\\zeta(\\sigma)}$ is, for $\\sigma > 1$, a characteristic function of some infinitely divisible distribution $\\mu_{\\sigma}$. A process with time parameter $\\sigma$ having $\\mu_{\\sigma}$ as its marginal at time $\\sigma$ is called a Riemann zeta process. Ehm [2] has found a functional limit theorem on this process being a backwards Levy process. In this paper, we replace $\\zeta(\\cdot)$ with a Dirichlet series $\\eta(\\cdot;a)$ generated by a nonnegative, completely multiplicative arithmetical function $a(\\cdot)$ satisfying (3), (4) and (5) below, and derive the same type of functional limit theorem as Ehm on the process corresponding to $\\eta(\\cdot;a)$ and being a backwards Levy process.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"56 1","pages":"843-882"},"PeriodicalIF":0.5000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/73631","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

$\zeta(\cdot)$ being the Riemann zeta function, $\zeta_{\sigma}(t) := \frac{\zeta(\sigma + i t)}{\zeta(\sigma)}$ is, for $\sigma > 1$, a characteristic function of some infinitely divisible distribution $\mu_{\sigma}$. A process with time parameter $\sigma$ having $\mu_{\sigma}$ as its marginal at time $\sigma$ is called a Riemann zeta process. Ehm [2] has found a functional limit theorem on this process being a backwards Levy process. In this paper, we replace $\zeta(\cdot)$ with a Dirichlet series $\eta(\cdot;a)$ generated by a nonnegative, completely multiplicative arithmetical function $a(\cdot)$ satisfying (3), (4) and (5) below, and derive the same type of functional limit theorem as Ehm on the process corresponding to $\eta(\cdot;a)$ and being a backwards Levy process.
Riemann-zeta过程函数极限定理的推广
$\zeta(\cdot)$是黎曼ζ函数,$\zeta_{\sigma}。具有时间参数$\sigma$的过程在时间$\sigma时以$\mu_{\sigma}$为其边际,称为黎曼ζ过程。Ehm[2]在这个过程中发现了一个函数极限定理,它是一个向后的Levy过程。在本文中,我们用满足以下(3)、(4)和(5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信