Empirical mode decomposition of near-infrared spectroscopy signals for predicting oil content in palm fruits

IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY
Inna Novianty , Ringga Gilang Baskoro , Muhammad Iqbal Nurulhaq , Muhammad Achirul Nanda
{"title":"Empirical mode decomposition of near-infrared spectroscopy signals for predicting oil content in palm fruits","authors":"Inna Novianty ,&nbsp;Ringga Gilang Baskoro ,&nbsp;Muhammad Iqbal Nurulhaq ,&nbsp;Muhammad Achirul Nanda","doi":"10.1016/j.inpa.2022.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>Oil content estimation in palm fruits is a precious property that significantly impacts oil palm production, starting from the upstream and downstream. This content can be used to monitor the progress of the oil palm fresh fruit bunch (FFB) and be applied to identify product profitability. Based on the near-infrared (NIR) signals, this study proposes an empirical mode decomposition (EMD) technique to decompose signals and predict the oil content of palm fruit. First, 350 palm fruits with Tenera varieties (<em>Elaeis guineensis</em> Jacq. var. tenera), at various ages of maturity, were harvested from the Cikabayan Oil Palm Plantation (IPB University, Indonesia). Second, each sample was sent directly to the laboratory for NIR signal measurements and oil content extraction. Then, the EMD analysis and artificial neural network (ANN) were employed to correlate the NIR signals and oil content. Finally, a robust EMD-ANN model is generated by optimizing the lowest possible errors. Based on performance evaluation, the proposed technique can predict oil content with a coefficient of determination (R<sup>2</sup>) of 0.933 ± 0.015 and a root mean squared error (RMSE) of 1.446 ± 0.208. These results demonstrate that the model has a good predictive capacity and has the potential to predict the oil content of palm fruits directly, without neither solvents nor reagents, which makes it environmentally friendly. Therefore, the proposed technique has a promising potential to be applied in the oil palm industry. Measurements like this will lead to the effective and efficient management of oil palm production.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"10 3","pages":"Pages 289-300"},"PeriodicalIF":7.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317322000105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

Oil content estimation in palm fruits is a precious property that significantly impacts oil palm production, starting from the upstream and downstream. This content can be used to monitor the progress of the oil palm fresh fruit bunch (FFB) and be applied to identify product profitability. Based on the near-infrared (NIR) signals, this study proposes an empirical mode decomposition (EMD) technique to decompose signals and predict the oil content of palm fruit. First, 350 palm fruits with Tenera varieties (Elaeis guineensis Jacq. var. tenera), at various ages of maturity, were harvested from the Cikabayan Oil Palm Plantation (IPB University, Indonesia). Second, each sample was sent directly to the laboratory for NIR signal measurements and oil content extraction. Then, the EMD analysis and artificial neural network (ANN) were employed to correlate the NIR signals and oil content. Finally, a robust EMD-ANN model is generated by optimizing the lowest possible errors. Based on performance evaluation, the proposed technique can predict oil content with a coefficient of determination (R2) of 0.933 ± 0.015 and a root mean squared error (RMSE) of 1.446 ± 0.208. These results demonstrate that the model has a good predictive capacity and has the potential to predict the oil content of palm fruits directly, without neither solvents nor reagents, which makes it environmentally friendly. Therefore, the proposed technique has a promising potential to be applied in the oil palm industry. Measurements like this will lead to the effective and efficient management of oil palm production.

近红外光谱信号经验模态分解预测棕榈果实含油量
棕榈果实含油量的估算是一项重要的属性,从上游到下游都对油棕的生产产生重大影响。该内容可用于监测油棕鲜果串(FFB)的进度,并用于确定产品的盈利能力。本研究基于近红外(NIR)信号,提出了一种经验模态分解(EMD)技术来分解信号并预测棕榈果实的含油量。首先,350种棕榈品种(Elaeis guineensis Jacq)。不同成熟期的var. tenera)是从Cikabayan油棕种植园(印度尼西亚IPB大学)收获的。其次,每个样品被直接送到实验室进行近红外信号测量和含油量提取。然后,采用EMD分析和人工神经网络(ANN)将近红外信号与含油量进行关联。最后,通过优化最小可能误差生成鲁棒的EMD-ANN模型。基于性能评价,该技术预测含油量的决定系数(R2)为0.933 ± 0.015,均方根误差(RMSE)为1.446 ± 0.208。这些结果表明,该模型具有良好的预测能力,具有直接预测棕榈果实含油量的潜力,不需要溶剂和试剂,具有环保性。因此,该技术在油棕工业中具有广阔的应用前景。这样的措施将导致油棕生产的有效和高效的管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing in Agriculture
Information Processing in Agriculture Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
21.10
自引率
0.00%
发文量
80
期刊介绍: Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信