Smooth Multisoliton Solutions of a 2-Component Peakon System with Cubic Nonlinearity

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
Nianhua Li, Q.P. Liu
{"title":"Smooth Multisoliton Solutions of a 2-Component Peakon System with Cubic Nonlinearity","authors":"Nianhua Li, Q.P. Liu","doi":"10.3842/sigma.2022.066","DOIUrl":null,"url":null,"abstract":"We present a reciprocal transformation which links the Geng-Xue equation to a particular reduction of the first negative flow of the Boussinesq hierarchy. We discuss two reductions of the reciprocal transformation for the Degasperis-Procesi and Novikov equations, respectively. With the aid of the Darboux transformation and the reciprocal transformation, we obtain a compact parametric representation for the smooth soliton solutions such as multi-kink solutions of the Geng-Xue equation.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/sigma.2022.066","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We present a reciprocal transformation which links the Geng-Xue equation to a particular reduction of the first negative flow of the Boussinesq hierarchy. We discuss two reductions of the reciprocal transformation for the Degasperis-Procesi and Novikov equations, respectively. With the aid of the Darboux transformation and the reciprocal transformation, we obtain a compact parametric representation for the smooth soliton solutions such as multi-kink solutions of the Geng-Xue equation.
具有三次非线性的二分量峰值系统的光滑多孤子解
我们提出了一个倒易变换,它将耿雪方程与Boussinesq层次的第一个负流的一个特殊约简联系起来。我们分别讨论了Degasperis-Procesi和Novikov方程的倒数变换的两个约简。借助于Darboux变换和互易变换,我们得到了耿雪方程的光滑孤立子解(如多扭结解)的一个紧致参数表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信