New time-changes of unipotent flows on quotients of Lorentz groups

IF 0.7 1区 数学 Q2 MATHEMATICS
Siyuan Tang
{"title":"New time-changes of unipotent flows on quotients of Lorentz groups","authors":"Siyuan Tang","doi":"10.3934/jmd.2022002","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We study the cocompact lattices <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\Gamma\\subset SO(n, 1) $\\end{document}</tex-math></inline-formula> so that the Laplace–Beltrami operator <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\Delta $\\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id=\"M3\">\\begin{document}$ SO(n)\\backslash SO(n, 1)/\\Gamma $\\end{document}</tex-math></inline-formula> has eigenvalues in <inline-formula><tex-math id=\"M4\">\\begin{document}$ (0, \\frac{1}{4}) $\\end{document}</tex-math></inline-formula>, and then show that there exist time-changes of unipotent flows on <inline-formula><tex-math id=\"M5\">\\begin{document}$ SO(n, 1)/\\Gamma $\\end{document}</tex-math></inline-formula> that are not measurably conjugate to the unperturbed ones. A main ingredient of the proof is a stronger version of the branching of the complementary series. Combining it with a refinement of the works of Ratner and Flaminio–Forni is adequate for our purpose.</p>","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2022002","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We study the cocompact lattices \begin{document}$ \Gamma\subset SO(n, 1) $\end{document} so that the Laplace–Beltrami operator \begin{document}$ \Delta $\end{document} on \begin{document}$ SO(n)\backslash SO(n, 1)/\Gamma $\end{document} has eigenvalues in \begin{document}$ (0, \frac{1}{4}) $\end{document}, and then show that there exist time-changes of unipotent flows on \begin{document}$ SO(n, 1)/\Gamma $\end{document} that are not measurably conjugate to the unperturbed ones. A main ingredient of the proof is a stronger version of the branching of the complementary series. Combining it with a refinement of the works of Ratner and Flaminio–Forni is adequate for our purpose.

洛伦兹群商上幂偶流的新时变
我们研究了共压缩格\ begin{document}$\Gamma\子集SO(n,1)$\end{document},使得\ begin{document}$SO(n)\反斜杠SO(n、1,然后证明了在\ begin{document}$SO(n,1)/\ Gamma$\ end{documents}上存在与未扰动流不可测量共轭的单势流的时间变化。证明的一个主要成分是互补级数分支的更强版本。将其与拉特纳和弗拉米尼奥的作品相结合——福尼就足以达到我们的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including: Number theory Symplectic geometry Differential geometry Rigidity Quantum chaos Teichmüller theory Geometric group theory Harmonic analysis on manifolds. The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信