{"title":"A family of nonparametric unit root tests for processes driven by infinite variance innovations","authors":"K. C. Gogebakan","doi":"10.1515/snde-2021-0058","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents extensions to the family of nonparametric fractional variance ratio (FVR) unit root tests of Nielsen (2009. “A Powerful Test of the Autoregressive Unit Root Hypothesis Based on a Tuning Parameter Free Statistic.” Econometric Theory 25: 1515–44) under heavy tailed (infinite variance) innovations. In this regard, we first develop the asymptotic theory for these FVR tests under this setup. We show that the limiting distributions of the tests are free of serial correlation nuisance parameters, but depend on the tail index of the infinite variance process. Then, we compare the finite sample size and power performance of our FVR unit root tests with the well-known parametric ADF test under the impact of the heavy tailed shocks. Simulations demonstrate that under heavy tailed innovations, the nonparametric FVR tests have desirable size and power properties.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"26 1","pages":"705 - 721"},"PeriodicalIF":0.7000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2021-0058","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper presents extensions to the family of nonparametric fractional variance ratio (FVR) unit root tests of Nielsen (2009. “A Powerful Test of the Autoregressive Unit Root Hypothesis Based on a Tuning Parameter Free Statistic.” Econometric Theory 25: 1515–44) under heavy tailed (infinite variance) innovations. In this regard, we first develop the asymptotic theory for these FVR tests under this setup. We show that the limiting distributions of the tests are free of serial correlation nuisance parameters, but depend on the tail index of the infinite variance process. Then, we compare the finite sample size and power performance of our FVR unit root tests with the well-known parametric ADF test under the impact of the heavy tailed shocks. Simulations demonstrate that under heavy tailed innovations, the nonparametric FVR tests have desirable size and power properties.
期刊介绍:
Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.