Numerical Analysis of the Transient and Non-Isothermal Channel Flow of a Third-Grade Fluid with Convective Cooling

Q2 Engineering
T. Chinyoka, O. Makinde
{"title":"Numerical Analysis of the Transient and Non-Isothermal Channel Flow of a Third-Grade Fluid with Convective Cooling","authors":"T. Chinyoka, O. Makinde","doi":"10.24423/ENGTRANS.1182.20200720","DOIUrl":null,"url":null,"abstract":"We investigate the unsteady, non-isothermal, pressure driven channel flow of a third grade liquid subject to exothermic reactions. We assume temperature dependent fluid viscosity and also that the flow is subjected to convective cooling at the channel walls. The exothermic reactions are modelled via Arrhenius kinetics and the convective heat exchange with the ambient at the channel walls follows Newton’s law of cooling. The time-dependent, coupled, and nonlinear partial differential equations governing the flow and heat transfer problem are solved numerically using efficient, semi-implicit finite difference algorithms. The sensitivity of the fluid flow and heat transfer system to the various embedded parameters is explored.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":"68 1","pages":"335-351"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.1182.20200720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

We investigate the unsteady, non-isothermal, pressure driven channel flow of a third grade liquid subject to exothermic reactions. We assume temperature dependent fluid viscosity and also that the flow is subjected to convective cooling at the channel walls. The exothermic reactions are modelled via Arrhenius kinetics and the convective heat exchange with the ambient at the channel walls follows Newton’s law of cooling. The time-dependent, coupled, and nonlinear partial differential equations governing the flow and heat transfer problem are solved numerically using efficient, semi-implicit finite difference algorithms. The sensitivity of the fluid flow and heat transfer system to the various embedded parameters is explored.
对流冷却三级流体瞬态非等温通道流动的数值分析
我们研究了不稳定的,非等温的,压力驱动的三级液体的通道流动受到放热反应。我们假设流体粘度与温度有关,并且流动在通道壁上受到对流冷却。放热反应采用阿伦尼乌斯动力学模型,通道壁上与周围环境的对流换热遵循牛顿冷却定律。时间依赖的,耦合的,非线性偏微分方程控制的流动和传热问题的数值解决使用有效的,半隐式有限差分算法。探讨了流体流动和传热系统对各种嵌入参数的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Transactions
Engineering Transactions Engineering-Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
期刊介绍: Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信