Distributed consensus problem with caching on federated learning framework

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xin Yan, Yiming Qin, Xiao Hu, Xiaoling Xiao
{"title":"Distributed consensus problem with caching on federated learning framework","authors":"Xin Yan, Yiming Qin, Xiao Hu, Xiaoling Xiao","doi":"10.1177/15501329221092932","DOIUrl":null,"url":null,"abstract":"Federated learning framework facilitates more applications of deep learning algorithms on the existing network architectures, where the model parameters are aggregated in a centralized manner. However, some of federated learning participants are often inaccessible, such as in a power shortage or dormant state. That will force us to explore the possibility that the parameter aggregation is operated in an ad hoc manner, which is based on consensus computing. On the contrary, since caching mechanism is indispensable to any federated learning mobile node, it is necessary to investigate the connection between it and consensus computing. In this article, we first propose a novel federated learning paradigm, which supports an ad hoc operation mode for federated learning participants. Second, a discrete-time dynamic equation and its control law are formulated to satisfy the demands from federated learning framework, with a quantized caching scheme designed to mask the uncertainties from both asynchronous updates and measurement noises. Then, the consensus conditions and the convergence of the consensus protocol are deduced analytically, and a quantized caching strategy to optimize the convergence speed is provided. Our major contribution is to give the basic theories of distributed consensus problem for federated learning framework, and the theoretical results are validated by numerical simulations.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221092932","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning framework facilitates more applications of deep learning algorithms on the existing network architectures, where the model parameters are aggregated in a centralized manner. However, some of federated learning participants are often inaccessible, such as in a power shortage or dormant state. That will force us to explore the possibility that the parameter aggregation is operated in an ad hoc manner, which is based on consensus computing. On the contrary, since caching mechanism is indispensable to any federated learning mobile node, it is necessary to investigate the connection between it and consensus computing. In this article, we first propose a novel federated learning paradigm, which supports an ad hoc operation mode for federated learning participants. Second, a discrete-time dynamic equation and its control law are formulated to satisfy the demands from federated learning framework, with a quantized caching scheme designed to mask the uncertainties from both asynchronous updates and measurement noises. Then, the consensus conditions and the convergence of the consensus protocol are deduced analytically, and a quantized caching strategy to optimize the convergence speed is provided. Our major contribution is to give the basic theories of distributed consensus problem for federated learning framework, and the theoretical results are validated by numerical simulations.
联邦学习框架上缓存的分布式一致性问题
联邦学习框架促进了深度学习算法在现有网络体系结构上的更多应用,其中模型参数以集中的方式聚合。然而,一些联邦学习参与者经常无法访问,例如在电力短缺或休眠状态下。这将迫使我们探索以一种基于共识计算的特殊方式操作参数聚合的可能性。相反,由于缓存机制对于任何联合学习移动节点都是必不可少的,因此有必要研究它与共识计算之间的联系。在本文中,我们首先提出了一种新的联邦学习范式,它支持联邦学习参与者的特别操作模式。其次,根据联邦学习框架的要求,建立离散时间动态方程及其控制律,并采用量化缓存方案来掩盖异步更新和测量噪声带来的不确定性。然后,解析推导了共识协议的一致性条件和收敛性,并给出了优化收敛速度的量化缓存策略。我们的主要贡献是给出了联邦学习框架分布式共识问题的基本理论,并通过数值模拟对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
4.30%
发文量
94
审稿时长
3.6 months
期刊介绍: International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信