{"title":"Spatial distribution of fishing intensity of canvas stow net fishing vessels in the East China Sea and the Yellow Sea","authors":"","doi":"10.21077/ijf.2023.70.1.125766-01","DOIUrl":null,"url":null,"abstract":" Present study used the position data of BeiDou Vessel Monitoring System (VMS) in 2018, with respect to motorised fishingvessels in the East China Sea and the Yellow Sea to construct a fishing vessel operating status classification model based onthreshold, deep neural network and DBSCAN density clustering algorithm. The geographic grid was divided into cells of0.1°×0.1° and the average fishing time per square km (h km-2) in each grid was calculated to obtain the spatial distributionof fishing intensity in the study region in 2018. The results showed that the threshold method could classify fishing vesselsailing, anchoring and other states with an accuracy of more than 95%. The deep neural network and DBSCAN algorithmcould classify the two states of netting and closing with an accuracy of 94.7%. By classifying the status of fishing vessels,quantitative monitoring can be carried out to better serve the management of marine fishery resources and marine ecologicalprotectionKeywords: China, DBSCAN, Deep neural network, Fishing intensity, Spatial distribution, VMS, Voyage extraction","PeriodicalId":50372,"journal":{"name":"Indian Journal of Fisheries","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Fisheries","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21077/ijf.2023.70.1.125766-01","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 1
Abstract
Present study used the position data of BeiDou Vessel Monitoring System (VMS) in 2018, with respect to motorised fishingvessels in the East China Sea and the Yellow Sea to construct a fishing vessel operating status classification model based onthreshold, deep neural network and DBSCAN density clustering algorithm. The geographic grid was divided into cells of0.1°×0.1° and the average fishing time per square km (h km-2) in each grid was calculated to obtain the spatial distributionof fishing intensity in the study region in 2018. The results showed that the threshold method could classify fishing vesselsailing, anchoring and other states with an accuracy of more than 95%. The deep neural network and DBSCAN algorithmcould classify the two states of netting and closing with an accuracy of 94.7%. By classifying the status of fishing vessels,quantitative monitoring can be carried out to better serve the management of marine fishery resources and marine ecologicalprotectionKeywords: China, DBSCAN, Deep neural network, Fishing intensity, Spatial distribution, VMS, Voyage extraction
期刊介绍:
Indian Journal of Fisheries is published quarterly by the Indian Council of Agricultural Research (ICAR), New Delhi. Original contributions in the field of Fish and fisheries science are considered for publication in the Journal. The material submitted must be unpublished and not under consideration for publication elsewhere.
Papers based on research which kills or damages any species, regarded as thratened/ endangered by IUCN crieteria or is as such listed in the Red Data Book appropriate to the geographic area concerned, will not be accepted by the Journal, unless the work has clear conservation objectives.