On weighted integrability of the sum of series with monotone coefficients with respect to multiplicative systems

IF 0.7 Q2 MATHEMATICS
M.Zh. Turgumbaev, Z. R. Suleimenova, D. I. Tungushbaeva
{"title":"On weighted integrability of the sum of series with monotone coefficients with respect to multiplicative systems","authors":"M.Zh. Turgumbaev, Z. R. Suleimenova, D. I. Tungushbaeva","doi":"10.31489/2023m2/160-168","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the questions about the weighted integrability of the sum of series with respect to multiplicative systems with monotone coefficients. Conditions are obtained for weight functions that ensure that the sum of such series belongs to the weighted Lebesgue space. The main theorems are proved without the condition that the generator sequence is bounded; in particular, it can be unbounded. In the case of boundedness of the generator sequence, the proved theorems imply an analogue of the well-known Hardy-Littlewood theorem on trigonometric series with monotone coefficients.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023m2/160-168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the questions about the weighted integrability of the sum of series with respect to multiplicative systems with monotone coefficients. Conditions are obtained for weight functions that ensure that the sum of such series belongs to the weighted Lebesgue space. The main theorems are proved without the condition that the generator sequence is bounded; in particular, it can be unbounded. In the case of boundedness of the generator sequence, the proved theorems imply an analogue of the well-known Hardy-Littlewood theorem on trigonometric series with monotone coefficients.
关于乘法系统单调系数级数和的加权可积性
本文讨论了关于单调系数乘性系统级数和的加权可积性问题。获得了权函数的条件,这些条件确保了这样的级数的和属于加权Lebesgue空间。在不存在生成序列有界的条件下,证明了主要定理;特别是,它可以是无界的。在生成序列有界的情况下,所证明的定理暗示了著名的Hardy-Littlewood定理在单调系数三角级数上的类似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信