Accelerated Bregman Primal-Dual Methods Applied to Optimal Transport and Wasserstein Barycenter Problems

IF 1.9 Q1 MATHEMATICS, APPLIED
A. Chambolle, Juan Pablo Contreras
{"title":"Accelerated Bregman Primal-Dual Methods Applied to Optimal Transport and Wasserstein Barycenter Problems","authors":"A. Chambolle, Juan Pablo Contreras","doi":"10.1137/22m1481865","DOIUrl":null,"url":null,"abstract":"This paper discusses the efficiency of Hybrid Primal-Dual (HPD) type algorithms to approximate solve discrete Optimal Transport (OT) and Wasserstein Barycenter (WB) problems, with and without entropic regularization. Our first contribution is an analysis showing that these methods yield state-of-the-art convergence rates, both theoretically and practically. Next, we extend the HPD algorithm with linesearch proposed by Malitsky and Pock in 2018 to the setting where the dual space has a Bregman divergence, and the dual function is relatively strongly convex to the Bregman's kernel. This extension yields a new method for OT and WB problems based on smoothing of the objective that also achieves state-of-the-art convergence rates. Finally, we introduce a new Bregman divergence based on a scaled entropy function that makes the algorithm numerically stable and reduces the smoothing, leading to sparse solutions of OT and WB problems. We complement our findings with numerical experiments and comparisons.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1481865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 13

Abstract

This paper discusses the efficiency of Hybrid Primal-Dual (HPD) type algorithms to approximate solve discrete Optimal Transport (OT) and Wasserstein Barycenter (WB) problems, with and without entropic regularization. Our first contribution is an analysis showing that these methods yield state-of-the-art convergence rates, both theoretically and practically. Next, we extend the HPD algorithm with linesearch proposed by Malitsky and Pock in 2018 to the setting where the dual space has a Bregman divergence, and the dual function is relatively strongly convex to the Bregman's kernel. This extension yields a new method for OT and WB problems based on smoothing of the objective that also achieves state-of-the-art convergence rates. Finally, we introduce a new Bregman divergence based on a scaled entropy function that makes the algorithm numerically stable and reduces the smoothing, leading to sparse solutions of OT and WB problems. We complement our findings with numerical experiments and comparisons.
加速Bregman原对偶方法在最优输运和Wasserstein重心问题中的应用
本文讨论了混合原对偶(HPD)型算法在有熵正则化和无熵正则化的情况下近似求解离散最优传输(OT)和Wasserstein Barycenter(WB)问题的效率。我们的第一个贡献是分析表明,这些方法在理论和实践上都产生了最先进的收敛速度。接下来,我们将Malitsky和Pock在2018年提出的带有linesearch的HPD算法扩展到对偶空间具有Bregman散度,并且对偶函数相对强凸到Bregman核的设置。这种扩展产生了一种基于目标平滑的OT和WB问题的新方法,该方法也实现了最先进的收敛速度。最后,我们引入了一种新的基于比例熵函数的Bregman散度,该散度使算法在数值上稳定,并减少了平滑,从而导致OT和WB问题的稀疏解。我们用数值实验和比较来补充我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信