Quiver combinatorics and triangulations of cyclic polytopes

Q3 Mathematics
Nicholas J. Williams
{"title":"Quiver combinatorics and triangulations of cyclic polytopes","authors":"Nicholas J. Williams","doi":"10.5802/alco.280","DOIUrl":null,"url":null,"abstract":"Motivated by higher homological algebra, we associate quivers to triangulations of even-dimensional cyclic polytopes and prove two results showing what information about the triangulation is encoded in the quiver. We first show that the cut quivers of Iyama and Oppermann correspond precisely to 2 d -dimensional triangulations without interior ( d + 1)- simplices. This implies that these triangulations form a connected subgraph of the flip graph. Our second result shows how the quiver of a triangulation can be used to identify mutable internal d -simplices. This points towards what a theory of higher-dimensional quiver mutation might look like and gives a new way of understanding flips of triangulations of even-dimensional cyclic polytopes.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by higher homological algebra, we associate quivers to triangulations of even-dimensional cyclic polytopes and prove two results showing what information about the triangulation is encoded in the quiver. We first show that the cut quivers of Iyama and Oppermann correspond precisely to 2 d -dimensional triangulations without interior ( d + 1)- simplices. This implies that these triangulations form a connected subgraph of the flip graph. Our second result shows how the quiver of a triangulation can be used to identify mutable internal d -simplices. This points towards what a theory of higher-dimensional quiver mutation might look like and gives a new way of understanding flips of triangulations of even-dimensional cyclic polytopes.
环多面体的颤振组合和三角剖分
受高等同调代数的启发,我们将颤动与偶数维循环多面体的三角剖分联系起来,并证明了两个结果,表明关于三角剖分的信息编码在颤动中。我们首先证明了Iyama和Oppermann的割抖动精确地对应于没有内部(d+1)-单纯形的二维三角剖分。这意味着这些三角形形成了翻转图的连通子图。我们的第二个结果显示了如何使用三角测量的颤动来识别可变的内部d-单纯形。这指向了高维箭袋突变的理论可能是什么样子,并为理解偶数维循环多面体的三角形翻转提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信