THE LOCAL DENSITY AND THE LOCAL WEAK DENSITY IN THE SPACE OF PERMUTATION DEGREE AND IN HATTORI SPACE

Q3 Mathematics
T. Yuldashev, F. Mukhamadiev
{"title":"THE LOCAL DENSITY AND THE LOCAL WEAK DENSITY IN THE SPACE OF PERMUTATION DEGREE AND IN HATTORI SPACE","authors":"T. Yuldashev, F. Mukhamadiev","doi":"10.15826/umj.2020.2.011","DOIUrl":null,"url":null,"abstract":"In this paper, the local density \\((l d)\\) and the local weak density \\((l w d)\\) in the space of permutation degree as well as the cardinal and topological properties of Hattori spaces are studied. In other words, we study the properties of the functor of permutation degree \\(S P^{n}\\) and the subfunctor of permutation degree \\(S P_{G}^{n}\\),  \\(P\\) is the cardinal number of topological spaces. Let \\(X\\) be an infinite \\(T_{1}\\)-space. We prove that the following propositions hold.(1) Let \\(Y^{n} \\subset X^{n}\\); (A) if \\(d\\, \\left(Y^{n} \\right)=d\\, \\left(X^{n} \\right)\\), then \\(d\\, \\left(S P^{n} Y\\right)=d\\, \\left(SP^{n} X\\right)\\); (B) if \\(l w d\\, \\left(Y^{n} \\right)=l w d\\, \\left(X^{n} \\right)\\), then \\(l w d\\, \\left(S P^{n} Y\\right)=l w d\\, \\left(S P^{n} X\\right)\\). (2) Let \\(Y\\subset X\\); (A) if \\(l d \\,(Y)=l d \\,(X)\\), then \\(l d\\, \\left(S P^{n} Y\\right)=l d\\, \\left(S P^{n} X\\right)\\); (B) if \\(w d \\,(Y)=w d \\,(X)\\), then \\(w d\\, \\left(S P^{n} Y\\right)=w d\\, \\left(S P^{n} X\\right)\\).(3) Let \\(n\\) be a positive integer, and let \\(G\\) be a subgroup of the permutation group \\(S_{n}\\). If \\(X\\) is a locally compact \\(T_{1}\\)-space, then \\(S P^{n} X, \\, S P_{G}^{n} X\\), and \\(\\exp _{n} X\\) are \\(k\\)-spaces.(4) Let \\(n\\) be a positive integer, and let \\(G\\) be a subgroup of the permutation group \\(S_{n}\\). If \\(X\\) is an infinite \\(T_{1}\\)-space, then \\(n \\,\\pi \\,w \\left(X\\right)=n \\, \\pi \\,w \\left(S P^{n} X \\right)=n \\,\\pi \\,w \\left(S P_{G}^{n} X \\right)=n \\,\\pi \\,w \\left(\\exp _{n} X \\right)\\).We also have studied that the functors \\(SP^{n},\\) \\(SP_{G}^{n} ,\\) and \\(\\exp _{n} \\) preserve any \\(k\\)-space. The functors \\(SP^{2}\\) and \\(SP_{G}^{3}\\) do not preserve Hattori spaces on the real line. Besides, it is proved that the density of an infinite \\(T_{1}\\)-space \\(X\\) coincides with the densities of the spaces \\(X^{n}\\), \\(\\,S P^{n} X\\), and \\(\\exp _{n} X\\). It is also shown that the weak density of an infinite \\(T_{1}\\)-space \\(X\\) coincides with the weak densities of the spaces \\(X^{n}\\), \\(\\,S P^{n} X\\), and \\(\\exp _{n} X\\).","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2020.2.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, the local density \((l d)\) and the local weak density \((l w d)\) in the space of permutation degree as well as the cardinal and topological properties of Hattori spaces are studied. In other words, we study the properties of the functor of permutation degree \(S P^{n}\) and the subfunctor of permutation degree \(S P_{G}^{n}\),  \(P\) is the cardinal number of topological spaces. Let \(X\) be an infinite \(T_{1}\)-space. We prove that the following propositions hold.(1) Let \(Y^{n} \subset X^{n}\); (A) if \(d\, \left(Y^{n} \right)=d\, \left(X^{n} \right)\), then \(d\, \left(S P^{n} Y\right)=d\, \left(SP^{n} X\right)\); (B) if \(l w d\, \left(Y^{n} \right)=l w d\, \left(X^{n} \right)\), then \(l w d\, \left(S P^{n} Y\right)=l w d\, \left(S P^{n} X\right)\). (2) Let \(Y\subset X\); (A) if \(l d \,(Y)=l d \,(X)\), then \(l d\, \left(S P^{n} Y\right)=l d\, \left(S P^{n} X\right)\); (B) if \(w d \,(Y)=w d \,(X)\), then \(w d\, \left(S P^{n} Y\right)=w d\, \left(S P^{n} X\right)\).(3) Let \(n\) be a positive integer, and let \(G\) be a subgroup of the permutation group \(S_{n}\). If \(X\) is a locally compact \(T_{1}\)-space, then \(S P^{n} X, \, S P_{G}^{n} X\), and \(\exp _{n} X\) are \(k\)-spaces.(4) Let \(n\) be a positive integer, and let \(G\) be a subgroup of the permutation group \(S_{n}\). If \(X\) is an infinite \(T_{1}\)-space, then \(n \,\pi \,w \left(X\right)=n \, \pi \,w \left(S P^{n} X \right)=n \,\pi \,w \left(S P_{G}^{n} X \right)=n \,\pi \,w \left(\exp _{n} X \right)\).We also have studied that the functors \(SP^{n},\) \(SP_{G}^{n} ,\) and \(\exp _{n} \) preserve any \(k\)-space. The functors \(SP^{2}\) and \(SP_{G}^{3}\) do not preserve Hattori spaces on the real line. Besides, it is proved that the density of an infinite \(T_{1}\)-space \(X\) coincides with the densities of the spaces \(X^{n}\), \(\,S P^{n} X\), and \(\exp _{n} X\). It is also shown that the weak density of an infinite \(T_{1}\)-space \(X\) coincides with the weak densities of the spaces \(X^{n}\), \(\,S P^{n} X\), and \(\exp _{n} X\).
置换度空间和HATTORI空间中的局部密度和局部弱密度
在本文中,局部密度 \((l d)\) 和局部弱密度 \((l w d)\) 在置换度空间中,研究了服部空间的基数性质和拓扑性质。换句话说,我们研究了置换度函子的性质 \(S P^{n}\) 和置换度的子函子 \(S P_{G}^{n}\), \(P\) 是拓扑空间的基数。让 \(X\) 是无限的 \(T_{1}\)-space。我们证明下列命题成立:(1)设 \(Y^{n} \subset X^{n}\);(A)如果 \(d\, \left(Y^{n} \right)=d\, \left(X^{n} \right)\)那么, \(d\, \left(S P^{n} Y\right)=d\, \left(SP^{n} X\right)\);(B)如果 \(l w d\, \left(Y^{n} \right)=l w d\, \left(X^{n} \right)\)那么, \(l w d\, \left(S P^{n} Y\right)=l w d\, \left(S P^{n} X\right)\). (2)让 \(Y\subset X\);(A)如果 \(l d \,(Y)=l d \,(X)\)那么, \(l d\, \left(S P^{n} Y\right)=l d\, \left(S P^{n} X\right)\);(B)如果 \(w d \,(Y)=w d \,(X)\)那么, \(w d\, \left(S P^{n} Y\right)=w d\, \left(S P^{n} X\right)\)(3)让 \(n\) 是一个正整数,令 \(G\) 是置换群的子群 \(S_{n}\). 如果 \(X\) 是一个局部契约 \(T_{1}\)-空格,那么 \(S P^{n} X, \, S P_{G}^{n} X\),和 \(\exp _{n} X\) 是 \(k\)-空格。(4 \(n\) 是一个正整数,令 \(G\) 是置换群的子群 \(S_{n}\). 如果 \(X\) 是无限的 \(T_{1}\)-空格,那么 \(n \,\pi \,w \left(X\right)=n \, \pi \,w \left(S P^{n} X \right)=n \,\pi \,w \left(S P_{G}^{n} X \right)=n \,\pi \,w \left(\exp _{n} X \right)\)我们也学过函子 \(SP^{n},\) \(SP_{G}^{n} ,\) 和 \(\exp _{n} \) 保留任何 \(k\)-space。函子 \(SP^{2}\) 和 \(SP_{G}^{3}\) 不要在实线上保留服部空间。此外,还证明了一个无限大的密度 \(T_{1}\)-space \(X\) 与空间的密度一致 \(X^{n}\), \(\,S P^{n} X\),和 \(\exp _{n} X\). 还证明了一个无穷大的弱密度 \(T_{1}\)-space \(X\) 与空间的弱密度相吻合 \(X^{n}\), \(\,S P^{n} X\),和 \(\exp _{n} X\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信