On Weakly Reflective PF Submanifolds in Hilbert Spaces

IF 0.4 4区 数学 Q4 MATHEMATICS
M. Morimoto
{"title":"On Weakly Reflective PF Submanifolds in Hilbert Spaces","authors":"M. Morimoto","doi":"10.3836/tjm/1502179323","DOIUrl":null,"url":null,"abstract":"A weakly reflective submanifold is a minimal submanifold of a Riemannian manifold which has a certain symmetry at each point. In this paper we introduce this notion into a class of proper Fredholm (PF) submanifolds in Hilbert spaces and show that there exist so many infinite dimensional weakly reflective PF submanifolds in Hilbert spaces. In particular each fiber of the parallel transport map is shown to be weakly reflective. These imply that in infinite dimensional Hilbert spaces there exist so many homogeneous minimal submanifolds which are not totally geodesic, unlike in the finite dimensional Euclidean case.","PeriodicalId":48976,"journal":{"name":"Tokyo Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tokyo Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/tjm/1502179323","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

A weakly reflective submanifold is a minimal submanifold of a Riemannian manifold which has a certain symmetry at each point. In this paper we introduce this notion into a class of proper Fredholm (PF) submanifolds in Hilbert spaces and show that there exist so many infinite dimensional weakly reflective PF submanifolds in Hilbert spaces. In particular each fiber of the parallel transport map is shown to be weakly reflective. These imply that in infinite dimensional Hilbert spaces there exist so many homogeneous minimal submanifolds which are not totally geodesic, unlike in the finite dimensional Euclidean case.
Hilbert空间中的弱反射PF子流形
弱反射子流形是黎曼流形的极小子流形,它在每一点上都具有一定的对称性。本文将这一概念引入到Hilbert空间中的一类固有Fredholm (PF)子流形中,并证明了Hilbert空间中存在如此多的无限维弱反射PF子流形。特别地,平行传输图的每一根光纤显示为弱反射。这意味着在无限维希尔伯特空间中存在许多不完全测地线的齐次极小子流形,这与有限维欧几里得情况不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
16.70%
发文量
27
审稿时长
>12 weeks
期刊介绍: The Tokyo Journal of Mathematics was founded in 1978 with the financial support of six institutions in the Tokyo area: Gakushuin University, Keio University, Sophia University, Tokyo Metropolitan University, Tsuda College, and Waseda University. In 2000 Chuo University and Meiji University, in 2005 Tokai University, and in 2013 Tokyo University of Science, joined as supporting institutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信