Prime labelings on planar grid graphs

Q4 Mathematics
S. Curran
{"title":"Prime labelings on planar grid graphs","authors":"S. Curran","doi":"10.20429/tag.2022.090106","DOIUrl":null,"url":null,"abstract":"A graph G is said to be prime if there is a bijective function f : V ( G ) → { 1 , 2 , . . . , | V ( G ) |} such that f ( u ) and f ( v ) are relatively prime whenever u is adjacent to v . It is known that for any prime p and any integer n such that 1 ≤ n ≤ p , there exists a prime labeling on the p × n planar grid graph P p × P n . We show that P p × P n has a prime labeling for any odd prime p and any integer n such that p < n ≤ p 2 . We discuss how this approach may lead to prime labeling on P p × P n for any odd prime p and any positive integer n .","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/tag.2022.090106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

A graph G is said to be prime if there is a bijective function f : V ( G ) → { 1 , 2 , . . . , | V ( G ) |} such that f ( u ) and f ( v ) are relatively prime whenever u is adjacent to v . It is known that for any prime p and any integer n such that 1 ≤ n ≤ p , there exists a prime labeling on the p × n planar grid graph P p × P n . We show that P p × P n has a prime labeling for any odd prime p and any integer n such that p < n ≤ p 2 . We discuss how this approach may lead to prime labeling on P p × P n for any odd prime p and any positive integer n .
平面网格图上的素数标注
如果存在双射函数f:V(G),则图G称为素数→ {1,2,…,|V(G)|},使得每当u与V相邻时,f(u)和f(V)是相对素数。已知对于任何素数p和任何整数n使得1≤n≤p,在p×n平面网格图p p×p n上存在素数标记。我们证明了P P×P n对任何奇素数P和任何整数n都有素数标记,使得P<n≤P 2。我们讨论了这种方法如何导致任何奇素数P和任何正整数n的P P×P n上的素数标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory and Applications of Graphs
Theory and Applications of Graphs Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.70
自引率
0.00%
发文量
17
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信