Bounds for CDFs of Order Statistics Arising from INID Random Variables

IF 0.1 Q4 STATISTICS & PROBABILITY
J. Kazempoor, A. Habibirad, Kheirolah Okhli
{"title":"Bounds for CDFs of Order Statistics Arising from INID Random Variables","authors":"J. Kazempoor, A. Habibirad, Kheirolah Okhli","doi":"10.29252/jirss.19.1.39","DOIUrl":null,"url":null,"abstract":"In recent decades, studying order statistics arising from independent and not necessary identically distributed (INID) random variables has been a main concern for researchers. A cumulative distribution function (CDF) of these random variables (Fi:n) is a complex manipulating, long time consuming and a software-intensive tool that takes more and more times. Therefore, obtaining approximations and boundaries for Fi:n and other theoretical properties of these variables, such as moments, quantiles, characteristic function, and some related probabilities, has always been a main chal- lenge. Recently, Bayramoglu (2018) provided a new definition of ordering, by point to point ordering Fi’s (D-order) and showed that these new functions are CDFs and also, the corresponding random variables are independent. Thus, he suggested new CDFs (F[i]) that can be used as an alternative of Fi:n. Now with using, just F[1], and F[n], we have found the upper and lower bounds of Fi:n. Furthermore, specially a precisely approximation for F1:n and Fn:n (F1;n:n). Also in many cases approximations for other CDFs are derived. In addition, we compare approximated function with those oered by Bayramoglu and it is shown that our results of these proposed functions are far better than D-order functions.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":"19 1","pages":"39-57"},"PeriodicalIF":0.1000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/jirss.19.1.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

In recent decades, studying order statistics arising from independent and not necessary identically distributed (INID) random variables has been a main concern for researchers. A cumulative distribution function (CDF) of these random variables (Fi:n) is a complex manipulating, long time consuming and a software-intensive tool that takes more and more times. Therefore, obtaining approximations and boundaries for Fi:n and other theoretical properties of these variables, such as moments, quantiles, characteristic function, and some related probabilities, has always been a main chal- lenge. Recently, Bayramoglu (2018) provided a new definition of ordering, by point to point ordering Fi’s (D-order) and showed that these new functions are CDFs and also, the corresponding random variables are independent. Thus, he suggested new CDFs (F[i]) that can be used as an alternative of Fi:n. Now with using, just F[1], and F[n], we have found the upper and lower bounds of Fi:n. Furthermore, specially a precisely approximation for F1:n and Fn:n (F1;n:n). Also in many cases approximations for other CDFs are derived. In addition, we compare approximated function with those oered by Bayramoglu and it is shown that our results of these proposed functions are far better than D-order functions.
由INID随机变量引起的序统计量cdf的界
近几十年来,研究由独立和非必要同分布(INID)随机变量引起的有序统计量一直是研究人员关注的主要问题。这些随机变量(Fi:n)的累积分布函数(CDF)是一个复杂的操作,耗时长,并且需要越来越多的时间的软件密集型工具。因此,获得Fi:n的近似和边界以及这些变量的其他理论性质,如矩、分位数、特征函数和一些相关概率,一直是一个主要的挑战。最近,Bayramoglu(2018)通过点对点排序Fi 's (d阶)给出了排序的新定义,并表明这些新函数是cdf,并且相应的随机变量是独立的。因此,他提出了新的CDFs (F[i]),可以作为Fi:n的替代品。现在只用f[1]和F[n],我们就能求出Fi:n的上界和下界。进一步,特别给出了F1:n和Fn:n (F1;n:n)的精确近似。在许多情况下,也推导出其他CDFs的近似值。此外,我们还将这些近似函数与Bayramoglu的近似函数进行了比较,结果表明这些近似函数的结果远远好于d阶函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信