On the convergence of iterates of convolution operators in Banach spaces

Pub Date : 2020-05-06 DOI:10.7146/math.scand.a-119601
H. Mustafayev
{"title":"On the convergence of iterates of convolution operators in Banach spaces","authors":"H. Mustafayev","doi":"10.7146/math.scand.a-119601","DOIUrl":null,"url":null,"abstract":"Let G be a locally compact abelian group and let M(G) be the measure algebra of G. A measure μ∈M(G) is said to be power bounded if supn≥0∥μn∥1<∞. Let T={Tg:g∈G} be a bounded and continuous representation of G on a Banach space X. For any μ∈M(G), there is a bounded linear operator on X associated with µ, denoted by Tμ, which integrates Tg with respect to µ. In this paper, we study norm and almost everywhere behavior of the sequences {Tnμx} (x∈X) in the case when µ is power bounded. Some related problems are also discussed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-119601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a locally compact abelian group and let M(G) be the measure algebra of G. A measure μ∈M(G) is said to be power bounded if supn≥0∥μn∥1<∞. Let T={Tg:g∈G} be a bounded and continuous representation of G on a Banach space X. For any μ∈M(G), there is a bounded linear operator on X associated with µ, denoted by Tμ, which integrates Tg with respect to µ. In this paper, we study norm and almost everywhere behavior of the sequences {Tnμx} (x∈X) in the case when µ is power bounded. Some related problems are also discussed.
分享
查看原文
Banach空间中卷积算子迭代的收敛性
设G是局部紧阿贝尔群,M(G)是G的测度代数。如果supn≥0⁄μn⁄1<∞,则称测度μ∈M(G)是幂有界的。设T={Tg:g∈g}是g在Banach空间X上的有界连续表示。对于任何μ∈M(g),X上存在一个与µ相关的有界线性算子,用Tμ表示,它对Tg相对于µ积分。在本文中,我们研究了当µ是幂有界的情况下序列{Tnμx}(x∈x)的范数和几乎处处行为。文中还讨论了一些相关问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信