{"title":"On Reliability in a Multicomponent Stress-Strength Model with Power Lindley Distribution","authors":"Abbas Pak, Arjun K. Gupta, N. B. Khoolenjani","doi":"10.15446/RCE.V41N2.69621","DOIUrl":null,"url":null,"abstract":"In this paper we study the reliability of a multicomponent stress-strength model assuming that the components follow power Lindley model. The maximum likelihood estimate of the reliability parameter and its asymptotic confidence interval are obtained. Applying the parametric Bootstrap technique, interval estimation of the reliability is presented. Also, the Bayes estimate and highest posterior density credible interval of the reliability parameter are derived using suitable priors on the parameters. Because there is no closed form for the Bayes estimate, we use the Markov Chain Monte Carlo method to obtain approximate Bayes estimate of the reliability. To evaluate the performances of different procedures, simulation studies are conducted and an example of real data sets is provided.","PeriodicalId":54477,"journal":{"name":"Revista Colombiana De Estadistica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15446/RCE.V41N2.69621","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana De Estadistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/RCE.V41N2.69621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 17
Abstract
In this paper we study the reliability of a multicomponent stress-strength model assuming that the components follow power Lindley model. The maximum likelihood estimate of the reliability parameter and its asymptotic confidence interval are obtained. Applying the parametric Bootstrap technique, interval estimation of the reliability is presented. Also, the Bayes estimate and highest posterior density credible interval of the reliability parameter are derived using suitable priors on the parameters. Because there is no closed form for the Bayes estimate, we use the Markov Chain Monte Carlo method to obtain approximate Bayes estimate of the reliability. To evaluate the performances of different procedures, simulation studies are conducted and an example of real data sets is provided.
期刊介绍:
The Colombian Journal of Statistics publishes original articles of theoretical, methodological and educational kind in any branch of Statistics. Purely theoretical papers should include illustration of the techniques presented with real data or at least simulation experiments in order to verify the usefulness of the contents presented. Informative articles of high quality methodologies or statistical techniques applied in different fields of knowledge are also considered. Only articles in English language are considered for publication.
The Editorial Committee assumes that the works submitted for evaluation
have not been previously published and are not being given simultaneously for publication elsewhere, and will not be without prior consent of the Committee, unless, as a result of the assessment, decides not publish in the journal. It is further assumed that when the authors deliver a document for publication in the Colombian Journal of Statistics, they know the above conditions and agree with them.