The Generalization of Gaussians and Leonardo’s Octonions

IF 0.4 Q4 MATHEMATICS
R. Vieira, Milena Carolina dos Santos Mangueira, F. R. Alves, P. Catarino
{"title":"The Generalization of Gaussians and Leonardo’s Octonions","authors":"R. Vieira, Milena Carolina dos Santos Mangueira, F. R. Alves, P. Catarino","doi":"10.2478/amsil-2023-0004","DOIUrl":null,"url":null,"abstract":"Abstract In order to explore the Leonardo sequence, the process of complex-ification of this sequence is carried out in this work. With this, the Gaussian and octonion numbers of the Leonardo sequence are presented. Also, the recurrence, generating function, Binet’s formula, and matrix form of Leonardo’s Gaussian and octonion numbers are defined. The development of the Gaussian numbers is performed from the insertion of the imaginary component i in the one-dimensional recurrence of the sequence. Regarding the octonions, the terms of the Leonardo sequence are presented in eight dimensions. Furthermore, the generalizations and inherent properties of Leonardo’s Gaussians and octonions are presented.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"37 1","pages":"117 - 137"},"PeriodicalIF":0.4000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In order to explore the Leonardo sequence, the process of complex-ification of this sequence is carried out in this work. With this, the Gaussian and octonion numbers of the Leonardo sequence are presented. Also, the recurrence, generating function, Binet’s formula, and matrix form of Leonardo’s Gaussian and octonion numbers are defined. The development of the Gaussian numbers is performed from the insertion of the imaginary component i in the one-dimensional recurrence of the sequence. Regarding the octonions, the terms of the Leonardo sequence are presented in eight dimensions. Furthermore, the generalizations and inherent properties of Leonardo’s Gaussians and octonions are presented.
高斯和列奥纳多八元数的推广
摘要为了探索列奥纳多序列,本文对该序列进行了复杂化处理。据此,给出了列奥纳多序列的高斯数和八进制数。定义了Leonardo的高斯数和八次幂的递推式、生成函数、Binet公式和矩阵形式。高斯数的发展是通过在序列的一维递归中插入虚分量i来执行的。关于八元数,列奥纳多序列的术语以八个维度呈现。此外,还介绍了列奥纳多的高斯数和八元数的推广和内在性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信