{"title":"Towards Robust Fingerprinting of Relational Databases by Mitigating Correlation Attacks.","authors":"Tianxi Ji, Erman Ayday, Emre Yilmaz, Pan Li","doi":"10.1109/tdsc.2022.3191117","DOIUrl":null,"url":null,"abstract":"<p><p>Database fingerprinting is widely adopted to prevent unauthorized data sharing and identify source of data leakages. Although existing schemes are robust against common attacks, their robustness degrades significantly if attackers utilize inherent correlations among database entries. In this paper, we demonstrate the vulnerability of existing schemes by identifying different correlation attacks: column-wise correlation attack, row-wise correlation attack, and their integration. We provide robust fingerprinting against these attacks by developing mitigation techniques, which can work as post-processing steps for any off-the-shelf database fingerprinting schemes and preserve the utility of databases. We investigate the impact of correlation attacks and the performance of mitigation techniques using a real-world database. Our results show (i) high success rates of correlation attacks against existing fingerprinting schemes (e.g., integrated correlation attack can distort 64.8% fingerprint bits by just modifying 14.2% entries in a fingerprinted database), and (ii) high robustness of mitigation techniques (e.g., after mitigation, integrated correlation attack can only distort 3% fingerprint bits). Additionally, the mitigation techniques effectively alleviate correlation attacks even if (i) attackers have access to correlation models directly computed from the original database, while the database owner uses inaccurate correlation models, (ii) or attackers utilizes higher order of correlations than the database owner.</p>","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"20 1","pages":"2939-2953"},"PeriodicalIF":7.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877201/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tdsc.2022.3191117","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Database fingerprinting is widely adopted to prevent unauthorized data sharing and identify source of data leakages. Although existing schemes are robust against common attacks, their robustness degrades significantly if attackers utilize inherent correlations among database entries. In this paper, we demonstrate the vulnerability of existing schemes by identifying different correlation attacks: column-wise correlation attack, row-wise correlation attack, and their integration. We provide robust fingerprinting against these attacks by developing mitigation techniques, which can work as post-processing steps for any off-the-shelf database fingerprinting schemes and preserve the utility of databases. We investigate the impact of correlation attacks and the performance of mitigation techniques using a real-world database. Our results show (i) high success rates of correlation attacks against existing fingerprinting schemes (e.g., integrated correlation attack can distort 64.8% fingerprint bits by just modifying 14.2% entries in a fingerprinted database), and (ii) high robustness of mitigation techniques (e.g., after mitigation, integrated correlation attack can only distort 3% fingerprint bits). Additionally, the mitigation techniques effectively alleviate correlation attacks even if (i) attackers have access to correlation models directly computed from the original database, while the database owner uses inaccurate correlation models, (ii) or attackers utilizes higher order of correlations than the database owner.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.