Nicole Motsch-Eichmann, F. Rieger, Thomas Rief, J. Hausmann
{"title":"Experimental investigation of modified co-curing process for carbon fiber/epoxy-laminates","authors":"Nicole Motsch-Eichmann, F. Rieger, Thomas Rief, J. Hausmann","doi":"10.1142/s2424913021430013","DOIUrl":null,"url":null,"abstract":"In this study, thermoset-based carbon fiber-reinforced polymer structures manufactured by the so-called modified co-curing process are analyzed and compared to well-established co-curing and co-bonding. The modified co-curing process allows manufacturing geometrically complex parts without traditional core technologies by producing laminates from a un-cured half and a pre-cured half in contrast to using two un-cured halves (co-curing) or a fully cured half plus an un-cured half (co-bonding). The interlaminar fracture toughness under Mode I loading, [Formula: see text], was determined in double cantilever beam (DCB) tests. [Formula: see text] displays a correlation of the degree of cure and the joint properties, with the co-curing laminates having 11% and 33% higher fracture toughness than the modified co-curing configurations. However, modified co-curing in all cases results is superior or equal to co-bonding. To assess the influence of surface properties for the bonding quality, different peel plies were compared with respect to the resulting joint properties. The results with up to 50% loss in [Formula: see text] values indicate the high importance of appropriate surface preparation. Subsequent tests also show that the negative influence of the peel ply on the joint properties can be reversed by abrasive surface treatment. It was found that at higher degrees of partial curing before co-curing, crack growth increasingly occurs in the interface of the bonded laminates. Therefore, the properties of the surface before joining were analyzed and modified to assess its relevance for the bonding properties and the potential for improvement.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Molecular Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424913021430013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
In this study, thermoset-based carbon fiber-reinforced polymer structures manufactured by the so-called modified co-curing process are analyzed and compared to well-established co-curing and co-bonding. The modified co-curing process allows manufacturing geometrically complex parts without traditional core technologies by producing laminates from a un-cured half and a pre-cured half in contrast to using two un-cured halves (co-curing) or a fully cured half plus an un-cured half (co-bonding). The interlaminar fracture toughness under Mode I loading, [Formula: see text], was determined in double cantilever beam (DCB) tests. [Formula: see text] displays a correlation of the degree of cure and the joint properties, with the co-curing laminates having 11% and 33% higher fracture toughness than the modified co-curing configurations. However, modified co-curing in all cases results is superior or equal to co-bonding. To assess the influence of surface properties for the bonding quality, different peel plies were compared with respect to the resulting joint properties. The results with up to 50% loss in [Formula: see text] values indicate the high importance of appropriate surface preparation. Subsequent tests also show that the negative influence of the peel ply on the joint properties can be reversed by abrasive surface treatment. It was found that at higher degrees of partial curing before co-curing, crack growth increasingly occurs in the interface of the bonded laminates. Therefore, the properties of the surface before joining were analyzed and modified to assess its relevance for the bonding properties and the potential for improvement.