Neumann boundary optimal control problems governed by parabolic variational equalities

Q4 Engineering
Carolina M. Bollo, C. Gariboldi, D. Tarzia
{"title":"Neumann boundary optimal control problems governed by parabolic variational equalities","authors":"Carolina M. Bollo, C. Gariboldi, D. Tarzia","doi":"10.2478/candc-2021-0012","DOIUrl":null,"url":null,"abstract":"Abstract We consider a heat conduction problem S with mixed boundary conditions in an n-dimensional domain Ω with regular boundary and a family of problems Sα with also mixed boundary conditions in Ω, where α > 0 is the heat transfer coefficient on the portion of the boundary Γ1. In relation to these state systems, we formulate Neumann boundary optimal control problems on the heat flux q which is definite on the complementary portion Γ2 of the boundary of Ω. We obtain existence and uniqueness of the optimal controls, the first order optimality conditions in terms of the adjoint state and the convergence of the optimal controls, the system state and the adjoint state when the heat transfer coefficient α goes to infinity. Furthermore, we formulate particular boundary optimal control problems on a real parameter λ, in relation to the parabolic problems S and Sα and to mixed elliptic problems P and Pα. We find an explicit form for the optimal controls, we prove monotony properties and we obtain convergence results when the parameter time goes to infinity.","PeriodicalId":55209,"journal":{"name":"Control and Cybernetics","volume":"50 1","pages":"227 - 252"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/candc-2021-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We consider a heat conduction problem S with mixed boundary conditions in an n-dimensional domain Ω with regular boundary and a family of problems Sα with also mixed boundary conditions in Ω, where α > 0 is the heat transfer coefficient on the portion of the boundary Γ1. In relation to these state systems, we formulate Neumann boundary optimal control problems on the heat flux q which is definite on the complementary portion Γ2 of the boundary of Ω. We obtain existence and uniqueness of the optimal controls, the first order optimality conditions in terms of the adjoint state and the convergence of the optimal controls, the system state and the adjoint state when the heat transfer coefficient α goes to infinity. Furthermore, we formulate particular boundary optimal control problems on a real parameter λ, in relation to the parabolic problems S and Sα and to mixed elliptic problems P and Pα. We find an explicit form for the optimal controls, we prove monotony properties and we obtain convergence results when the parameter time goes to infinity.
抛物型变分方程控制的Neumann边界最优控制问题
摘要考虑在规则边界的n维域Ω上具有混合边界条件的热传导问题S和在Ω上具有混合边界条件的一类问题Sα,其中α > 0为边界部分的传热系数Γ1。针对这些状态系统,我们提出了在Ω的边界补部分Γ2上确定的热流通量q的Neumann边界最优控制问题。我们得到了最优控制的存在唯一性,最优控制的伴随状态和收敛性的一阶最优性条件,以及传热系数α趋于无穷时的系统状态和伴随状态。在此基础上,针对抛物型问题S和Sα以及混合椭圆型问题P和Pα,给出了实参数λ上的特殊边界最优控制问题。我们找到了最优控制的显式形式,证明了单调性,并得到了参数时间趋于无穷时的收敛结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Control and Cybernetics
Control and Cybernetics 工程技术-计算机:控制论
CiteScore
0.50
自引率
0.00%
发文量
0
期刊介绍: The field of interest covers general concepts, theories, methods and techniques associated with analysis, modelling, control and management in various systems (e.g. technological, economic, ecological, social). The journal is particularly interested in results in the following areas of research: Systems and control theory: general systems theory, optimal cotrol, optimization theory, data analysis, learning, artificial intelligence, modelling & identification, game theory, multicriteria optimisation, decision and negotiation methods, soft approaches: stochastic and fuzzy methods, computer science,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信