P. Tiwari, Maya Verma, Ambika, H. Chutani, Pradeep Pratap Singh, Saraswati Kanodia, Tanushree Verma
{"title":"Titanium dioxide based nanoparticles and their applications in water remediation","authors":"P. Tiwari, Maya Verma, Ambika, H. Chutani, Pradeep Pratap Singh, Saraswati Kanodia, Tanushree Verma","doi":"10.1680/jenes.22.00095","DOIUrl":null,"url":null,"abstract":"Water is an essential component of life. Only 2.5% of the total percentage of water available on Earth is fresh. As the World’s population is increasing, water pollution is becoming more complex and difficult to remove. Due to change in climatic conditions globally, many regions of the World is facing multiple challenges in sustainable supply of water and its magnitude is rapidly increasing. Therefore, reuse of waste water is becoming a common necessity. However, due to the presence of water contaminants, such as heavy metals, organic pollutants, and many other complex compounds, treatment of contaminated waste water is essential for a healthy life. Nanotechnology offers opportunities to provide efficient, cost-effective, and environmentally sustainable solutions for supplying potable water for human use and clean water for agricultural and industrial uses. Photocatalytic processes have shown a great potential as a low-cost, environmentally friendly and sustainable treatment technology for water purification. Photocatalytic degradation has been used efficiently for the degradation and removal of toxic and harmful chemicals to improve water quality. Titanium based semiconductor have been employed as photocatalysts in degradation of organic molecules. In the present review, titanium dioxide based nanoparticles and their applications in water remediation.","PeriodicalId":15665,"journal":{"name":"Journal of Environmental Engineering and Science","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Engineering and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jenes.22.00095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Water is an essential component of life. Only 2.5% of the total percentage of water available on Earth is fresh. As the World’s population is increasing, water pollution is becoming more complex and difficult to remove. Due to change in climatic conditions globally, many regions of the World is facing multiple challenges in sustainable supply of water and its magnitude is rapidly increasing. Therefore, reuse of waste water is becoming a common necessity. However, due to the presence of water contaminants, such as heavy metals, organic pollutants, and many other complex compounds, treatment of contaminated waste water is essential for a healthy life. Nanotechnology offers opportunities to provide efficient, cost-effective, and environmentally sustainable solutions for supplying potable water for human use and clean water for agricultural and industrial uses. Photocatalytic processes have shown a great potential as a low-cost, environmentally friendly and sustainable treatment technology for water purification. Photocatalytic degradation has been used efficiently for the degradation and removal of toxic and harmful chemicals to improve water quality. Titanium based semiconductor have been employed as photocatalysts in degradation of organic molecules. In the present review, titanium dioxide based nanoparticles and their applications in water remediation.
期刊介绍:
Journal of Environmental Engineering and Science is an international, peer-reviewed publication providing a forum for the dissemination of environmental research, encouraging interdisciplinary research collaboration to address environmental problems. It addresses all aspects of environmental engineering and applied environmental science, with the exception of noise, radiation and light.