Higher genera for proper actions of Lie groups

IF 0.5 Q3 MATHEMATICS
P. Piazza, H. Posthuma
{"title":"Higher genera for proper actions of Lie groups","authors":"P. Piazza, H. Posthuma","doi":"10.2140/akt.2019.4.473","DOIUrl":null,"url":null,"abstract":"Let G be a Lie group with finitely many connected components satisfying the rapid decay (RD) property. As an example, we can take G to be a connected semisimple Lie group. Let M be a G-proper manifold with compact quotient M/G. In this paper we establish index formulae for the C^*-higher indices of a G-equivariant Dirac-type operator on M. We use these formulae to investigate geometric properties of suitably defined higher genera on M. In particular, we establish the G-proper homotopy invariance of the higher signatures of a G-proper manifold and the vanishing of the A-hat genera of a G-spin, G-proper manifold admitting a G-invariant metric of positive scalar curvature.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2019.4.473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

Let G be a Lie group with finitely many connected components satisfying the rapid decay (RD) property. As an example, we can take G to be a connected semisimple Lie group. Let M be a G-proper manifold with compact quotient M/G. In this paper we establish index formulae for the C^*-higher indices of a G-equivariant Dirac-type operator on M. We use these formulae to investigate geometric properties of suitably defined higher genera on M. In particular, we establish the G-proper homotopy invariance of the higher signatures of a G-proper manifold and the vanishing of the A-hat genera of a G-spin, G-proper manifold admitting a G-invariant metric of positive scalar curvature.
李群正当作用的高属
设G是一个具有有限多个满足快速衰减性质的连通元的李群。例如,我们可以取G为连通的半单李群。设M为紧商M/G的G-固有流形。本文建立了m上g等变狄拉克型算子的C^*-高指标的指标公式,利用这些公式研究了m上适当定义的高属的几何性质,特别是建立了g -固有流形的g -固有高特征的g -固有同伦不变性和g -自旋g -固有流形的a -hat属的消失性,g -自旋g -固有流形具有正标量曲率的g不变度规。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信