{"title":"A Review on Recent Trends and Applications of IoT in Additive Manufacturing","authors":"Bharat Kumar Chigilipalli, Teja Karri, Sathish Naidu Chetti, Girish Bhiogade, R. Kottala, Muralimohan Cheepu","doi":"10.3390/asi6020050","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) is a new way of communicating that is changing the way things are monitored and controlled from a distance. Gradually, companies want to digitalize their production processes and implement control and monitoring systems on the shop floor. On the basis of the Industry 4.0 concept, internet features and database services have been incorporated into processes in order to reinvent manufacturing. This study proposes a proof-of-concept system for the management of additive manufacturing (AM) machines, where an internet integration of beacon technology in the manufacturing environment enables the rapid and intuitive interchange of production data retrieved from machines with mobile devices in various applications. Even though AM technologies can be used to customize the final product, they cannot be used to make a lot of 3D-printed jobs at once for commercial usage. Therefore, this research-based study aims to understand IoT technologies to improve the understanding and reliability of AM processes and 3D print smart materials in large quantities for manufacturers around the world. This study demonstrates the significance of the successful use of internet-based technologies in AM by examining its practical consequences in various fields. This paper gives an overview of IoT-based remote monitoring and control systems that could solve problems in AM, particularly in digital twin, human augmentation (HA), 3D bioprinters, 3D scanners, input parameters optimization, and electronics fields. IoT in AM makes production processes more efficient, reduces waste, and meets customer needs.","PeriodicalId":36273,"journal":{"name":"Applied System Innovation","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied System Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/asi6020050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5
Abstract
The Internet of Things (IoT) is a new way of communicating that is changing the way things are monitored and controlled from a distance. Gradually, companies want to digitalize their production processes and implement control and monitoring systems on the shop floor. On the basis of the Industry 4.0 concept, internet features and database services have been incorporated into processes in order to reinvent manufacturing. This study proposes a proof-of-concept system for the management of additive manufacturing (AM) machines, where an internet integration of beacon technology in the manufacturing environment enables the rapid and intuitive interchange of production data retrieved from machines with mobile devices in various applications. Even though AM technologies can be used to customize the final product, they cannot be used to make a lot of 3D-printed jobs at once for commercial usage. Therefore, this research-based study aims to understand IoT technologies to improve the understanding and reliability of AM processes and 3D print smart materials in large quantities for manufacturers around the world. This study demonstrates the significance of the successful use of internet-based technologies in AM by examining its practical consequences in various fields. This paper gives an overview of IoT-based remote monitoring and control systems that could solve problems in AM, particularly in digital twin, human augmentation (HA), 3D bioprinters, 3D scanners, input parameters optimization, and electronics fields. IoT in AM makes production processes more efficient, reduces waste, and meets customer needs.