La théorie de Hodge des bimodules de Soergel (d'après Soergel et Elias-Williamson)

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
S. Riche
{"title":"La théorie de Hodge des bimodules de Soergel (d'après Soergel et Elias-Williamson)","authors":"S. Riche","doi":"10.24033/ast.1083","DOIUrl":null,"url":null,"abstract":"Soergel bimodules are certain bimodules over polynomial algebras, associated with Coxeter groups, and introduced by Soergel in the 1990's while studying the category O of complex semisimple Lie algebras. Even though their definition is algebraic and rather elementary, some of their crucial properties were known until recently only in the case of crystallographic Coxeter groups, where these bimodules can be interpreted in terms of equivariant cohomology of Schubert varieties. In recent work Elias and Williamson have proved these properties in full generality by showing that these bimodules possess \"Hodge type\" properties. These results imply positivity of Kazhdan-Lusztig polynomials in full generality, and provide an algebraic proof of the Kazhdan-Lusztig conjecture.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ast.1083","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

Soergel bimodules are certain bimodules over polynomial algebras, associated with Coxeter groups, and introduced by Soergel in the 1990's while studying the category O of complex semisimple Lie algebras. Even though their definition is algebraic and rather elementary, some of their crucial properties were known until recently only in the case of crystallographic Coxeter groups, where these bimodules can be interpreted in terms of equivariant cohomology of Schubert varieties. In recent work Elias and Williamson have proved these properties in full generality by showing that these bimodules possess "Hodge type" properties. These results imply positivity of Kazhdan-Lusztig polynomials in full generality, and provide an algebraic proof of the Kazhdan-Lusztig conjecture.
Soergel的Hodge双模理论(基于Soergel和Elias-Williamson)
Soergel双模是多项式代数上的某些双模,与Coxeter群有关,由Soergel在20世纪90年代研究复半单李代数的O类时引入。尽管它们的定义是代数的,而且相当初级,但直到最近,人们才知道它们的一些关键性质是在晶体Coxeter群的情况下才知道的,在这种情况下,这些双模可以用Schubert变异的等变上同调来解释。在最近的工作中,Elias和Williamson通过证明这些双模具有“Hodge型”性质,证明了这些性质的全面性。这些结果暗示了Kazhdan-Lusztig多项式的完全一般正性,并提供了Kazhdan-Lusztig猜想的代数证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信