{"title":"Effect of graphene-family incorporation on corrosion performance of PEO coatings formed on titanium alloys: a mini review","authors":"Meysam Pourshadloo, Hesam Asghar Rezaei, Mina Saeidnia, Hossein Alkokab, Masoud Soroush Bathaei","doi":"10.1680/jsuin.22.01043","DOIUrl":null,"url":null,"abstract":"By being exposed to air or moisture or by a chemical reaction, titanium forms an oxide layers on its surface, which is stable and tightly adherent and provides it with protection from the environment, since titanium is a reactive material. Due to their extremely low thickness (∼10 nm), this oxide layer is easy to destroy under corrosion conditions. Through plasma electrolytic oxidation (PEO), titanium and titanium alloys can be equipped with thick and adhesive TiO2 coatings to enhance their surface characteristics. In the PEO process, TiO2 composite coatings can be formed by mixing proper additives with electrolytes, such as powders, particles, sheets, or compounds. The graphene and its family derivatives (i.e., graphene oxide and reduced graphene oxide) are among the most popular additives used in PEO composite coatings due to their high stability in corrosive media. Graphene family nanosheets can accumulate in PEO coatings because of their porous nature, changing the surface characteristics dramatically. The use of graphene family nanosheets in the electrolyte can be useful to reduce coating porosity and improve final corrosion properties by adjusting electrolyte conditions. Therefore, the diffusion pathways for corrosive ions in composite TiO2 coatings become considerably more tortuous than with pure TiO2.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.22.01043","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3
Abstract
By being exposed to air or moisture or by a chemical reaction, titanium forms an oxide layers on its surface, which is stable and tightly adherent and provides it with protection from the environment, since titanium is a reactive material. Due to their extremely low thickness (∼10 nm), this oxide layer is easy to destroy under corrosion conditions. Through plasma electrolytic oxidation (PEO), titanium and titanium alloys can be equipped with thick and adhesive TiO2 coatings to enhance their surface characteristics. In the PEO process, TiO2 composite coatings can be formed by mixing proper additives with electrolytes, such as powders, particles, sheets, or compounds. The graphene and its family derivatives (i.e., graphene oxide and reduced graphene oxide) are among the most popular additives used in PEO composite coatings due to their high stability in corrosive media. Graphene family nanosheets can accumulate in PEO coatings because of their porous nature, changing the surface characteristics dramatically. The use of graphene family nanosheets in the electrolyte can be useful to reduce coating porosity and improve final corrosion properties by adjusting electrolyte conditions. Therefore, the diffusion pathways for corrosive ions in composite TiO2 coatings become considerably more tortuous than with pure TiO2.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.