{"title":"Performance evaluation of an oily industrial wastewater treatment system using the application of activated sludge model No. 3","authors":"Mohamed Ayoub","doi":"10.1111/wej.12843","DOIUrl":null,"url":null,"abstract":"The purpose of the present study was to adapt the activated sludge model No. 3 (ASM3) to the characteristics of oily industrial wastewater, determining the utmost significant and appropriate kinetic as well as stoichiometric parameters. An oily industrial wastewater treatment system was simulated to assess ASM3 validation and perform sensitivity analysis using the STOAT program. The obtained results revealed that the ASM3 model, which was calibrated after adding the Arrhenius equation into consideration, provided strong correlations with the analytical results of chemical oxygen demand (COD), total suspended solids (TSS), mixed liquor volatile suspended solids (MLVSS) and total suspended solids in the return activated sludge flow (TSS in RAS) concentrations. The values of modelled effluent COD and TSS are very close to those corresponding real values of the treated wastewater by a difference of between 0.5% and 1.5%. Thus, this model becomes successful in representing oily industrial wastewater treatment as a new trend added to the traditional modelling of sewage treatment.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"37 1","pages":"359 - 367"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water and Environment Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/wej.12843","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
The purpose of the present study was to adapt the activated sludge model No. 3 (ASM3) to the characteristics of oily industrial wastewater, determining the utmost significant and appropriate kinetic as well as stoichiometric parameters. An oily industrial wastewater treatment system was simulated to assess ASM3 validation and perform sensitivity analysis using the STOAT program. The obtained results revealed that the ASM3 model, which was calibrated after adding the Arrhenius equation into consideration, provided strong correlations with the analytical results of chemical oxygen demand (COD), total suspended solids (TSS), mixed liquor volatile suspended solids (MLVSS) and total suspended solids in the return activated sludge flow (TSS in RAS) concentrations. The values of modelled effluent COD and TSS are very close to those corresponding real values of the treated wastewater by a difference of between 0.5% and 1.5%. Thus, this model becomes successful in representing oily industrial wastewater treatment as a new trend added to the traditional modelling of sewage treatment.
期刊介绍:
Water and Environment Journal is an internationally recognised peer reviewed Journal for the dissemination of innovations and solutions focussed on enhancing water management best practice. Water and Environment Journal is available to over 12,000 institutions with a further 7,000 copies physically distributed to the Chartered Institution of Water and Environmental Management (CIWEM) membership, comprised of environment sector professionals based across the value chain (utilities, consultancy, technology suppliers, regulators, government and NGOs). As such, the journal provides a conduit between academics and practitioners. We therefore particularly encourage contributions focussed at the interface between academia and industry, which deliver industrially impactful applied research underpinned by scientific evidence. We are keen to attract papers on a broad range of subjects including:
-Water and wastewater treatment for agricultural, municipal and industrial applications
-Sludge treatment including processing, storage and management
-Water recycling
-Urban and stormwater management
-Integrated water management strategies
-Water infrastructure and distribution
-Climate change mitigation including management of impacts on agriculture, urban areas and infrastructure