C. Morley, W. Promrak, W. Apuanram, P. Chaiyo, Sarawute Chantraprasert, D. Ong, A. Suphawajruksakul, N. Thaemsiri, M. Tingay
{"title":"A major Miocene deepwater mud canopy system: The North Sabah–Pagasa Wedge, northwestern Borneo","authors":"C. Morley, W. Promrak, W. Apuanram, P. Chaiyo, Sarawute Chantraprasert, D. Ong, A. Suphawajruksakul, N. Thaemsiri, M. Tingay","doi":"10.1130/ges02518.1","DOIUrl":null,"url":null,"abstract":"Three-dimensional seismic reflection data, well data, and analogues from areas with extensive shale tectonics indicate that the enigmatic deepwater “shale nappe or thrust sheet” region of northern offshore Sabah, Malaysia, now referred to as the North Sabah–Pagasa Wedge (NSPW), is actually a region of major mobile shale activity characterized by mini-basins and mud pipes, chambers, and volcanoes. A short burst of extensive mud volcano activity produced a submarine mud canopy complex composed of ~50 mud volcano centers (each probably composed of multiple mud volcanoes) that cover individual areas of between 4 and 80 km2. The total area of dense mud canopy development is ~1900 km2. During the middle Miocene, the post-collisional NSPW was composed predominantly of overpressured shales that were loaded by as much as 4 km thickness of clastics in a series of mini-basins. Following mini-basin development, there was a very important phase of mud volcanism, which built extensive mud canopies (coalesced mud flows) and vent complexes. The mud canopies affected deposition of the overlying and interfingering deposits, including late middle to early late Miocene deepwater turbidite sandstones, which are reservoirs in some fields (e.g., Rotan field). The presence of the extensive mud volcanoes indicates very large volumes of gas had to be generated within the NSPW to drive the mud volcanism. The Sabah example is only the second mud canopy system to be described in the literature and is the largest and most complex.","PeriodicalId":55100,"journal":{"name":"Geosphere","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/ges02518.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
Three-dimensional seismic reflection data, well data, and analogues from areas with extensive shale tectonics indicate that the enigmatic deepwater “shale nappe or thrust sheet” region of northern offshore Sabah, Malaysia, now referred to as the North Sabah–Pagasa Wedge (NSPW), is actually a region of major mobile shale activity characterized by mini-basins and mud pipes, chambers, and volcanoes. A short burst of extensive mud volcano activity produced a submarine mud canopy complex composed of ~50 mud volcano centers (each probably composed of multiple mud volcanoes) that cover individual areas of between 4 and 80 km2. The total area of dense mud canopy development is ~1900 km2. During the middle Miocene, the post-collisional NSPW was composed predominantly of overpressured shales that were loaded by as much as 4 km thickness of clastics in a series of mini-basins. Following mini-basin development, there was a very important phase of mud volcanism, which built extensive mud canopies (coalesced mud flows) and vent complexes. The mud canopies affected deposition of the overlying and interfingering deposits, including late middle to early late Miocene deepwater turbidite sandstones, which are reservoirs in some fields (e.g., Rotan field). The presence of the extensive mud volcanoes indicates very large volumes of gas had to be generated within the NSPW to drive the mud volcanism. The Sabah example is only the second mud canopy system to be described in the literature and is the largest and most complex.
期刊介绍:
Geosphere is GSA''s ambitious, online-only publication that addresses the growing need for timely publication of research results, data, software, and educational developments in ways that cannot be addressed by traditional formats. The journal''s rigorously peer-reviewed, high-quality research papers target an international audience in all geoscience fields. Its innovative format encourages extensive use of color, animations, interactivity, and oversize figures (maps, cross sections, etc.), and provides easy access to resources such as GIS databases, data archives, and modeling results. Geosphere''s broad scope and variety of contributions is a refreshing addition to traditional journals.