Nomin-Erdene Oyunbaatar, A. Shanmugasundaram, K. Kwon, Dong-Weon Lee
{"title":"Continuous monitoring of cardiovascular function with a smart stent incorporating a flexible and stretchable wireless pressure sensor","authors":"Nomin-Erdene Oyunbaatar, A. Shanmugasundaram, K. Kwon, Dong-Weon Lee","doi":"10.1088/1361-6439/acf7ce","DOIUrl":null,"url":null,"abstract":"The development of smart stents, capable of monitoring cardiovascular diseases and communicating vascular abnormalities to medical doctors, has garnered significant attention in the field of biomedical engineering. Various ex-situ fabrication strategies have been proposed to concurrently manufacture the smart stent and pressure sensor, thereby reducing the risk of sensor detachment caused by blood flow. However, the practical utility of these devices is still limited due to the rigidity of the wireless pressure sensor. In this study, we propose a flexible and stretchable smart self-reporting stent that incorporates a wireless pressure sensor. The fabrication process has been optimized to create a serpentine-shaped wireless pressure sensor that matches the shape and flexibility of the polymer stent struts. We thoroughly investigated the structural integrity, resonance frequency, stretchability, flexibility, and radial force of the manufactured smart self-reporting stent under different conditions. The wireless pressure sensor demonstrated a sensitivity of 0.15 MHz mmHg−1, as determined through experimental analysis. To demonstrate the feasibility of the proposed smart stent, we implanted it into the arteries of a three-dimensional phantom system. The obtained results, combined with the flexible and stretchable nature of the proposed smart self-reporting stent, highlight its potential for effective monitoring of the heart’s functional dynamics and detection of in-stent restenosis.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/acf7ce","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The development of smart stents, capable of monitoring cardiovascular diseases and communicating vascular abnormalities to medical doctors, has garnered significant attention in the field of biomedical engineering. Various ex-situ fabrication strategies have been proposed to concurrently manufacture the smart stent and pressure sensor, thereby reducing the risk of sensor detachment caused by blood flow. However, the practical utility of these devices is still limited due to the rigidity of the wireless pressure sensor. In this study, we propose a flexible and stretchable smart self-reporting stent that incorporates a wireless pressure sensor. The fabrication process has been optimized to create a serpentine-shaped wireless pressure sensor that matches the shape and flexibility of the polymer stent struts. We thoroughly investigated the structural integrity, resonance frequency, stretchability, flexibility, and radial force of the manufactured smart self-reporting stent under different conditions. The wireless pressure sensor demonstrated a sensitivity of 0.15 MHz mmHg−1, as determined through experimental analysis. To demonstrate the feasibility of the proposed smart stent, we implanted it into the arteries of a three-dimensional phantom system. The obtained results, combined with the flexible and stretchable nature of the proposed smart self-reporting stent, highlight its potential for effective monitoring of the heart’s functional dynamics and detection of in-stent restenosis.
期刊介绍:
Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data.
The journal is focussed on all aspects of:
-nano- and micro- mechanical systems
-nano- and micro- electomechanical systems
-nano- and micro- electrical and mechatronic systems
-nano- and micro- engineering
-nano- and micro- scale science
Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering.
Below are some examples of the topics that are included within the scope of the journal:
-MEMS and NEMS:
Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc.
-Fabrication techniques and manufacturing:
Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing.
-Packaging and Integration technologies.
-Materials, testing, and reliability.
-Micro- and nano-fluidics:
Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip.
-Lab-on-a-chip and micro- and nano-total analysis systems.
-Biomedical systems and devices:
Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces.
-Energy and power:
Including power MEMS/NEMS, energy harvesters, actuators, microbatteries.
-Electronics:
Including flexible electronics, wearable electronics, interface electronics.
-Optical systems.
-Robotics.