Vanishing cohomology and Betti bounds for complex projective hypersurfaces

Pub Date : 2020-04-16 DOI:10.5802/aif.3486
Laurenctiu Maxim, Laurenctiu Puaunescu, Mihai Tibùar
{"title":"Vanishing cohomology and Betti bounds for complex projective hypersurfaces","authors":"Laurenctiu Maxim, Laurenctiu Puaunescu, Mihai Tibùar","doi":"10.5802/aif.3486","DOIUrl":null,"url":null,"abstract":"We employ the formalism of vanishing cycles and perverse sheaves to introduce and study the vanishing cohomology of complex projective hypersurfaces. As a consequence, we give upper bounds for the Betti numbers of projective hypersurfaces, generalizing those obtained by different methods by Dimca in the isolated singularities case, and by Siersma-Tibăr in the case of hypersurfaces with a $1$-dimensional singular locus. We also prove a supplement to the Lefschetz hyperplane theorem for hypersurfaces, which takes the dimension of the singular locus into account, and we use it to give a new proof of a result of Kato.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We employ the formalism of vanishing cycles and perverse sheaves to introduce and study the vanishing cohomology of complex projective hypersurfaces. As a consequence, we give upper bounds for the Betti numbers of projective hypersurfaces, generalizing those obtained by different methods by Dimca in the isolated singularities case, and by Siersma-Tibăr in the case of hypersurfaces with a $1$-dimensional singular locus. We also prove a supplement to the Lefschetz hyperplane theorem for hypersurfaces, which takes the dimension of the singular locus into account, and we use it to give a new proof of a result of Kato.
分享
查看原文
复射影超曲面的消失上同调与Betti界
利用消失环和反常束的形式引入并研究了复射影超曲面的消失上同调。因此,我们给出了射影超曲面的Betti数的上界,推广了Dimca在孤立奇点情况下用不同方法得到的结果,推广了siersma - tibrure在1维奇异轨迹超曲面情况下用不同方法得到的结果。我们还证明了考虑奇异轨迹维数的Lefschetz超平面定理对超曲面的补充,并利用它对Kato的一个结果给出了新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信