{"title":"A distributed energy-efficient opportunistic routing accompanied by timeslot allocation in wireless sensor networks","authors":"M. Ri, Yefei Han, Jinsuk Pak","doi":"10.1177/15501477211049917","DOIUrl":null,"url":null,"abstract":"Sensed data can be forwarded only in one direction to the base station in one-dimensional queue wireless sensor networks different from mesh structure, so the network lifetime will be shortened if some continuous neighboring nodes have run out of their energy. So designing routing protocols for balancing energy consumption is a challenging problem. However, traditional and existing opportunistic routing protocols for one-dimensional queue wireless sensor network proposed so far have not yet addressed this problem to prolong the network lifetime by introducing sleep mode. In this article, we propose a distributed energy-efficient opportunistic routing algorithm accompanied by timeslot allocation by using specific network topology of one-dimensional queue wireless sensor network. In our new algorithm, clustering and routing tree construction is performed while introducing the optimal relay transmission distance achieved by using opportunistic routing principle, and at the same time, interference-free wake up time is scheduled, which may optimize energy consumption and decrease the number of various control messages as possible to prolong the network lifetime. Furthermore, this improves energy efficiency by introducing the operation mode giving up cluster head role. Simulation results show that the proposed protocol can significantly improve the network performance such as energy consumption and network connectivity, when compared with other existing protocols.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501477211049917","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5
Abstract
Sensed data can be forwarded only in one direction to the base station in one-dimensional queue wireless sensor networks different from mesh structure, so the network lifetime will be shortened if some continuous neighboring nodes have run out of their energy. So designing routing protocols for balancing energy consumption is a challenging problem. However, traditional and existing opportunistic routing protocols for one-dimensional queue wireless sensor network proposed so far have not yet addressed this problem to prolong the network lifetime by introducing sleep mode. In this article, we propose a distributed energy-efficient opportunistic routing algorithm accompanied by timeslot allocation by using specific network topology of one-dimensional queue wireless sensor network. In our new algorithm, clustering and routing tree construction is performed while introducing the optimal relay transmission distance achieved by using opportunistic routing principle, and at the same time, interference-free wake up time is scheduled, which may optimize energy consumption and decrease the number of various control messages as possible to prolong the network lifetime. Furthermore, this improves energy efficiency by introducing the operation mode giving up cluster head role. Simulation results show that the proposed protocol can significantly improve the network performance such as energy consumption and network connectivity, when compared with other existing protocols.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.