Enhanced Schlieren System for In-Situ Observation of Dynamic Light-Resin Interactions in Projection-based Stereolithography Process

IF 2.4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING
Aditya Chivate, Chi Zhou
{"title":"Enhanced Schlieren System for In-Situ Observation of Dynamic Light-Resin Interactions in Projection-based Stereolithography Process","authors":"Aditya Chivate, Chi Zhou","doi":"10.1115/1.4062218","DOIUrl":null,"url":null,"abstract":"\n Digital maskless lithography is growing in popularity due to its unique ability to fabricate high-resolution parts at a fast speed without the need for physical masks. Though the theoretical foundation for photopolymerization exists, it is difficult to observe the voxel growth process in situ. This can be attributed to the low refractive index difference between cured and uncured resin, the microscopic size of the parts, and the rapid rate of photopolymerization after crossing the threshold. Therefore, a system that can address these issues is highly desired. Schlieren optics is a tool that makes the minute changes in the refractive indices visible. This paper proposes a modified schlieren-based observation system with confocal magnifying optics that create a virtual screen at the focal plane of the camera. The proposed technique visualizes the light deflection by the changing density induced refractive index gradient, and the use of focusing optics enables flexible positioning of the virtual screen and optical magnification. Single-shot binary images with a different number of pixels were used for fabricating voxels. Different factors affecting the voxel shape like chemical composition, energy input is studied. The observed results are compared against simulations based on Beer-Lambert's law, photopolymerization curve, and Gaussian beam propagation theory. The physical experimental results demonstrated the effectiveness of the proposed observation system. Application of this system in fabrication of microlenses and its advantages over theoretical model-based profile predictions are briefly discussed.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062218","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Digital maskless lithography is growing in popularity due to its unique ability to fabricate high-resolution parts at a fast speed without the need for physical masks. Though the theoretical foundation for photopolymerization exists, it is difficult to observe the voxel growth process in situ. This can be attributed to the low refractive index difference between cured and uncured resin, the microscopic size of the parts, and the rapid rate of photopolymerization after crossing the threshold. Therefore, a system that can address these issues is highly desired. Schlieren optics is a tool that makes the minute changes in the refractive indices visible. This paper proposes a modified schlieren-based observation system with confocal magnifying optics that create a virtual screen at the focal plane of the camera. The proposed technique visualizes the light deflection by the changing density induced refractive index gradient, and the use of focusing optics enables flexible positioning of the virtual screen and optical magnification. Single-shot binary images with a different number of pixels were used for fabricating voxels. Different factors affecting the voxel shape like chemical composition, energy input is studied. The observed results are compared against simulations based on Beer-Lambert's law, photopolymerization curve, and Gaussian beam propagation theory. The physical experimental results demonstrated the effectiveness of the proposed observation system. Application of this system in fabrication of microlenses and its advantages over theoretical model-based profile predictions are briefly discussed.
增强型纹影系统用于投影立体光刻过程中动态光-树脂相互作用的原位观察
数字无掩模光刻技术越来越受欢迎,因为它具有快速制造高分辨率零件的独特能力,而不需要物理掩模。虽然光聚合的理论基础是存在的,但很难在原位观察到体素的生长过程。这可以归因于固化和未固化树脂之间的低折射率差异,零件的微观尺寸以及超过阈值后的光聚合速度快。因此,一个能够解决这些问题的系统是非常需要的。纹影光学是一种使折射率的微小变化可见的工具。本文提出了一种改进的基于纹影的观测系统,该系统采用共焦放大光学元件,在相机焦平面上形成虚拟屏幕。该技术通过改变密度引起的折射率梯度来显示光的偏转,并且利用聚焦光学实现了虚拟屏幕的灵活定位和光学放大。使用不同像素数的单镜头二值图像来制作体素。研究了影响体素形状的化学成分、能量输入等因素。将观测结果与基于比尔-朗伯定律、光聚合曲线和高斯光束传播理论的模拟结果进行了比较。物理实验结果证明了该观测系统的有效性。简要讨论了该系统在微透镜制造中的应用及其相对于基于理论模型的轮廓预测的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
20.00%
发文量
126
审稿时长
12 months
期刊介绍: Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信