Dynamics in diffusive Leslie–Gower prey–predator model with weak diffusion

IF 2.6 3区 数学 Q1 MATHEMATICS, APPLIED
Xiao Wu, Mingkang Ni
{"title":"Dynamics in diffusive Leslie–Gower prey–predator model with weak diffusion","authors":"Xiao Wu, Mingkang Ni","doi":"10.15388/namc.2022.27.29535","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the diffusive Leslie–Gower prey–predator model with weak diffusion. Assuming that the diffusion rates of prey and predator are sufficiently small and the natural growth rate of prey is much greater than that of predators, the diffusive Leslie–Gower prey–predator model is a singularly perturbed problem. Using travelling wave transformation, we firstly transform our problem into a multiscale slow-fast system with two small parameters. We prove the existence of heteroclinic orbit, canard explosion phenomenon and relaxation oscillation cycle for the slow-fast system by applying the geometric singular perturbation theory. Thus, we get the existence of travelling waves and periodic solutions of the original reaction–diffusion model. Furthermore, we also give some numerical examples to illustrate our theoretical results.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2022.27.29535","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is concerned with the diffusive Leslie–Gower prey–predator model with weak diffusion. Assuming that the diffusion rates of prey and predator are sufficiently small and the natural growth rate of prey is much greater than that of predators, the diffusive Leslie–Gower prey–predator model is a singularly perturbed problem. Using travelling wave transformation, we firstly transform our problem into a multiscale slow-fast system with two small parameters. We prove the existence of heteroclinic orbit, canard explosion phenomenon and relaxation oscillation cycle for the slow-fast system by applying the geometric singular perturbation theory. Thus, we get the existence of travelling waves and periodic solutions of the original reaction–diffusion model. Furthermore, we also give some numerical examples to illustrate our theoretical results.
弱扩散Leslie–Gower捕食-捕食者扩散模型的动力学
本文研究了弱扩散的扩散性Leslie-Gower捕食模型。假设猎物和捕食者的扩散速率足够小,而猎物的自然生长速率远大于捕食者的自然生长速率,弥漫性Leslie-Gower捕食者-猎物模型是一个奇异摄动问题。首先利用行波变换将问题转化为具有两个小参数的多尺度慢速系统。应用几何奇异摄动理论证明了慢-快系统存在异斜轨道、鸭式爆炸现象和弛豫振荡周期。由此得到了原反应扩散模型的行波存在性和周期解。此外,我们还给出了一些数值例子来说明我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nonlinear Analysis-Modelling and Control
Nonlinear Analysis-Modelling and Control MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.80
自引率
10.00%
发文量
63
审稿时长
9.6 months
期刊介绍: The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology. The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信