SIW-cavity based frequency reconfigurable antenna for IoT, WLAN, and 5G applications

IF 0.8 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Frequenz Pub Date : 2023-03-23 DOI:10.1515/freq-2022-0173
Babu Lal Sharma, Dhirendra Mathur, M. Sharma
{"title":"SIW-cavity based frequency reconfigurable antenna for IoT, WLAN, and 5G applications","authors":"Babu Lal Sharma, Dhirendra Mathur, M. Sharma","doi":"10.1515/freq-2022-0173","DOIUrl":null,"url":null,"abstract":"Abstract In order to minimize antenna complexity and improve gain, a new compact size low profile SIW-cavity-based frequency reconfigurable antenna is presented for IoT, WLAN, and 5G applications. The proposed antenna miniaturization is achieved by incorporating SIW cavity using metallic vias. The reconfiguration mechanism is accomplished by etching a circular ring slot and a C-shaped slot at the top metallic layer of the substrate. The frequency switching mechanism from low to high state is provided by eight PIN diodes. The diodes are placed in a symmetrical order along circular ring slot. All the diodes are switched on simultaneously to achieve low-frequency state operation. However, the off state of the diodes shifts antenna operation from low to high-frequency state. The antenna is fabricated on a small size substrate with an overall electrical size of (0.4λ* 0.4λ).The proposed antenna resonates at frequencies 2.4, and 3.45 GHz with 220 MHz and 470 MHz bandwidth respectively in low-frequency state. In high-frequency state, the antenna resonates at 5.8 GHz with 200 MHz bandwidth. The proposed antenna achieves peak gain of 6.3, 6.7, and 5.9 dBi in the three bands, and stable radiation patterns are attained in the working frequency band of the antenna.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"77 1","pages":"413 - 424"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2022-0173","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In order to minimize antenna complexity and improve gain, a new compact size low profile SIW-cavity-based frequency reconfigurable antenna is presented for IoT, WLAN, and 5G applications. The proposed antenna miniaturization is achieved by incorporating SIW cavity using metallic vias. The reconfiguration mechanism is accomplished by etching a circular ring slot and a C-shaped slot at the top metallic layer of the substrate. The frequency switching mechanism from low to high state is provided by eight PIN diodes. The diodes are placed in a symmetrical order along circular ring slot. All the diodes are switched on simultaneously to achieve low-frequency state operation. However, the off state of the diodes shifts antenna operation from low to high-frequency state. The antenna is fabricated on a small size substrate with an overall electrical size of (0.4λ* 0.4λ).The proposed antenna resonates at frequencies 2.4, and 3.45 GHz with 220 MHz and 470 MHz bandwidth respectively in low-frequency state. In high-frequency state, the antenna resonates at 5.8 GHz with 200 MHz bandwidth. The proposed antenna achieves peak gain of 6.3, 6.7, and 5.9 dBi in the three bands, and stable radiation patterns are attained in the working frequency band of the antenna.
用于物联网、WLAN和5G应用的基于SIW腔的频率可重构天线
摘要为了最大限度地降低天线复杂性并提高增益,提出了一种新型的紧凑尺寸、低轮廓、基于siw空腔的频率可重构天线,用于物联网、WLAN和5G应用。所提出的天线小型化是通过使用金属过孔合并SIW腔来实现的。重构机制通过在基板的顶部金属层蚀刻环形槽和c形槽来实现。从低状态到高状态的频率切换机制由8个PIN二极管提供。二极管沿环形槽对称排列。所有二极管同时接通,实现低频状态工作。然而,二极管的关闭状态将天线的工作从低频状态转移到高频状态。该天线被制作在一个小尺寸的基片上,其整体电尺寸为(0.4λ* 0.4λ)。在低频状态下,天线谐振频率分别为2.4 GHz和3.45 GHz,带宽分别为220 MHz和470 MHz。在高频状态下,天线谐振频率为5.8 GHz,带宽为200mhz。该天线在三个频段内的峰值增益分别为6.3、6.7和5.9 dBi,在天线工作频段内获得了稳定的辐射方向图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frequenz
Frequenz 工程技术-工程:电子与电气
CiteScore
2.40
自引率
18.20%
发文量
81
审稿时长
3 months
期刊介绍: Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal. Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies. RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信