{"title":"SIARD model and effect of lockdown on the dynamics of COVID-19 disease with non total immunity","authors":"M. Aziz-Alaoui, F. Najm, R. Yafia","doi":"10.1051/MMNP/2021025","DOIUrl":null,"url":null,"abstract":"We propose a new compartmental mathematical model describing the transmission and the spreading of COVID-19 epidemic with a special focus on the non-total immunity. The model (called SIARD) is given by a system of differential equations which model the interactions between five populations “susceptible”, “reported infectious”, “unreported infectious”, “recovered with/without non total immunity” and “death”. Depending on the basic reproduction number, we prove that the total immunity induces local stability-instability of equilibria and the epidemic may disappear after a first epidemic wave and more epidemic waves may appear in the case of non-total immunity. Using the sensitivity analysis we identify the most sensitive parameters. Numerical simulations are carried out to illustrate our theoretical results. As an application, we found that our model fits well the Moroccan epidemic wave, and predicts more than one wave for French case.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/MMNP/2021025","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
We propose a new compartmental mathematical model describing the transmission and the spreading of COVID-19 epidemic with a special focus on the non-total immunity. The model (called SIARD) is given by a system of differential equations which model the interactions between five populations “susceptible”, “reported infectious”, “unreported infectious”, “recovered with/without non total immunity” and “death”. Depending on the basic reproduction number, we prove that the total immunity induces local stability-instability of equilibria and the epidemic may disappear after a first epidemic wave and more epidemic waves may appear in the case of non-total immunity. Using the sensitivity analysis we identify the most sensitive parameters. Numerical simulations are carried out to illustrate our theoretical results. As an application, we found that our model fits well the Moroccan epidemic wave, and predicts more than one wave for French case.
期刊介绍:
The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues.
Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.