Fruit Tree Disease Recognition Based on Residual Neural Network and Attention Mechanism

Xiedong Song, Vladimir Y. Mariano
{"title":"Fruit Tree Disease Recognition Based on Residual Neural Network and Attention Mechanism","authors":"Xiedong Song, Vladimir Y. Mariano","doi":"10.37965/jait.2023.0291","DOIUrl":null,"url":null,"abstract":"Fruit growing has played a huge role in solving food supply issues in many coutries. However, the yield and quality of fruits can be affected by various diseases, and thus timely and accurate identification of disease conditions is particularly important. Currently, using image recognition and object detection technology to diagnose fruit tree diseases has become a research hotspot in forestry informatization. Convolutional neural networks eliminate the preprocessing of manual feature selection and have high recognition performance. However, it is not easy to train due to the risk of gradient disappearance. In order to achieve better recognition effect, this research addresses the problem of applying small-scale data samples through data enhancement and transfer learning, and it optimizes the model by combining the two main attention mechanisms of SE and CBAM with ResNet50. Through experiments, it is found that the CBAM ResNet50 model has the best effect, improving the application performance of the studied model in actual scenarios.","PeriodicalId":70996,"journal":{"name":"人工智能技术学报(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"人工智能技术学报(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.37965/jait.2023.0291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fruit growing has played a huge role in solving food supply issues in many coutries. However, the yield and quality of fruits can be affected by various diseases, and thus timely and accurate identification of disease conditions is particularly important. Currently, using image recognition and object detection technology to diagnose fruit tree diseases has become a research hotspot in forestry informatization. Convolutional neural networks eliminate the preprocessing of manual feature selection and have high recognition performance. However, it is not easy to train due to the risk of gradient disappearance. In order to achieve better recognition effect, this research addresses the problem of applying small-scale data samples through data enhancement and transfer learning, and it optimizes the model by combining the two main attention mechanisms of SE and CBAM with ResNet50. Through experiments, it is found that the CBAM ResNet50 model has the best effect, improving the application performance of the studied model in actual scenarios.
基于残差神经网络和注意机制的果树病害识别
水果种植在解决许多国家的粮食供应问题方面发挥了巨大作用。然而,水果的产量和质量会受到各种疾病的影响,因此及时准确地识别疾病状况尤为重要。目前,利用图像识别和目标检测技术对果树病害进行诊断已成为林业信息化的研究热点。卷积神经网络消除了人工特征选择的预处理,具有较高的识别性能。然而,由于梯度消失的风险,训练并不容易。为了获得更好的识别效果,本研究通过数据增强和迁移学习解决了应用小规模数据样本的问题,并将SE和CBAM两种主要注意力机制与ResNet50相结合,对模型进行了优化。通过实验发现,CBAM-ResNet50模型的效果最好,提高了所研究模型在实际场景中的应用性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信