Saleem Ayaz Khan, S. Azam, M. Kanoun, G. Murtaza, M. Rani, S. Goumri‐Said
{"title":"Tailoring the electronic structure and optical properties of cadmium-doped zinc oxides nanosheet","authors":"Saleem Ayaz Khan, S. Azam, M. Kanoun, G. Murtaza, M. Rani, S. Goumri‐Said","doi":"10.1080/23311940.2017.1391734","DOIUrl":null,"url":null,"abstract":"Abstract Cd-doped ZnO nanosheet (ZnO NS) were investigated using a full-potential linearized augmented plane wave method within the generalized gradient approximation (GGA) to calculate the electronic structure and its optical response. The calculated band structures have shown that the Cd-doped ZnO NS is a direct band gap semiconductor at Γ with 1.50 eV band gap. The contribution of each atom/orbital were commented in light of total and partial densities of states. We also derived the optical constants (mainly the dielectric constants ε1(0) and ε2(0)), the absorption coefficient I(ω), refractive index n(ω), extinction coefficient k(ω), and energy-loss function L(ω). The spectrum of absorption coefficient has revealed to increase rapidly for photon energies higher than 2.5 eV. The absorption spectrum was found to be limited in energy region due to different contributions electronic transitions that occurred within ZnO NS and effect of Cd doping. Reducing the band gap of ZnO NS to low values is suitable process for light-emitting devices and solar cells applications.","PeriodicalId":43050,"journal":{"name":"Cogent Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311940.2017.1391734","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311940.2017.1391734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Abstract Cd-doped ZnO nanosheet (ZnO NS) were investigated using a full-potential linearized augmented plane wave method within the generalized gradient approximation (GGA) to calculate the electronic structure and its optical response. The calculated band structures have shown that the Cd-doped ZnO NS is a direct band gap semiconductor at Γ with 1.50 eV band gap. The contribution of each atom/orbital were commented in light of total and partial densities of states. We also derived the optical constants (mainly the dielectric constants ε1(0) and ε2(0)), the absorption coefficient I(ω), refractive index n(ω), extinction coefficient k(ω), and energy-loss function L(ω). The spectrum of absorption coefficient has revealed to increase rapidly for photon energies higher than 2.5 eV. The absorption spectrum was found to be limited in energy region due to different contributions electronic transitions that occurred within ZnO NS and effect of Cd doping. Reducing the band gap of ZnO NS to low values is suitable process for light-emitting devices and solar cells applications.