Tailoring the electronic structure and optical properties of cadmium-doped zinc oxides nanosheet

Saleem Ayaz Khan, S. Azam, M. Kanoun, G. Murtaza, M. Rani, S. Goumri‐Said
{"title":"Tailoring the electronic structure and optical properties of cadmium-doped zinc oxides nanosheet","authors":"Saleem Ayaz Khan, S. Azam, M. Kanoun, G. Murtaza, M. Rani, S. Goumri‐Said","doi":"10.1080/23311940.2017.1391734","DOIUrl":null,"url":null,"abstract":"Abstract Cd-doped ZnO nanosheet (ZnO NS) were investigated using a full-potential linearized augmented plane wave method within the generalized gradient approximation (GGA) to calculate the electronic structure and its optical response. The calculated band structures have shown that the Cd-doped ZnO NS is a direct band gap semiconductor at Γ with 1.50 eV band gap. The contribution of each atom/orbital were commented in light of total and partial densities of states. We also derived the optical constants (mainly the dielectric constants ε1(0) and ε2(0)), the absorption coefficient I(ω), refractive index n(ω), extinction coefficient k(ω), and energy-loss function L(ω). The spectrum of absorption coefficient has revealed to increase rapidly for photon energies higher than 2.5 eV. The absorption spectrum was found to be limited in energy region due to different contributions electronic transitions that occurred within ZnO NS and effect of Cd doping. Reducing the band gap of ZnO NS to low values is suitable process for light-emitting devices and solar cells applications.","PeriodicalId":43050,"journal":{"name":"Cogent Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311940.2017.1391734","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311940.2017.1391734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Abstract Cd-doped ZnO nanosheet (ZnO NS) were investigated using a full-potential linearized augmented plane wave method within the generalized gradient approximation (GGA) to calculate the electronic structure and its optical response. The calculated band structures have shown that the Cd-doped ZnO NS is a direct band gap semiconductor at Γ with 1.50 eV band gap. The contribution of each atom/orbital were commented in light of total and partial densities of states. We also derived the optical constants (mainly the dielectric constants ε1(0) and ε2(0)), the absorption coefficient I(ω), refractive index n(ω), extinction coefficient k(ω), and energy-loss function L(ω). The spectrum of absorption coefficient has revealed to increase rapidly for photon energies higher than 2.5 eV. The absorption spectrum was found to be limited in energy region due to different contributions electronic transitions that occurred within ZnO NS and effect of Cd doping. Reducing the band gap of ZnO NS to low values is suitable process for light-emitting devices and solar cells applications.
定制镉掺杂氧化锌纳米片的电子结构和光学性能
摘要在广义梯度近似(GGA)下,采用全电位线性化增广平面波方法研究了掺镉ZnO纳米片(ZnO-NS)的电子结构及其光学响应。计算的能带结构表明,Cd掺杂的ZnO NS在Γ处是一种直接带隙半导体,带隙为1.50eV。根据态的总密度和部分密度对每个原子/轨道的贡献进行了评论。我们还导出了光学常数(主要是介电常数ε1(0)和ε2(0))、吸收系数I(ω)、折射率n(ω),消光系数k(ω)和能量损失函数L(ω)。当光子能量高于2.5eV时,吸收系数的光谱迅速增加。由于ZnO NS中发生的电子跃迁和Cd掺杂的影响,吸收光谱在能量区受到限制。将ZnO NS的带隙减小到低值是适用于发光器件和太阳能电池应用的工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cogent Physics
Cogent Physics PHYSICS, MULTIDISCIPLINARY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信