Stability and symmetry of ion-induced surface patterning

Christopher S. R. Matthes, Nasr M. Ghoniem, Daniel Walgraef
{"title":"Stability and symmetry of ion-induced surface patterning","authors":"Christopher S. R. Matthes,&nbsp;Nasr M. Ghoniem,&nbsp;Daniel Walgraef","doi":"10.1186/s41313-017-0005-1","DOIUrl":null,"url":null,"abstract":"<p>We present a continuum model of ion-induced surface patterning. The model incorporates the atomic processes of sputtering, re-deposition and surface diffusion, and is shown to display the generic features of the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear and non-linear stability analyses of the evolution equation give estimates of the emerging pattern wavelength and spatial symmetry. The analytical theory is confirmed by numerical simulations of the evolution equation with the Fast Fourier Transform method, where we show the influence of the incident ion angle, flux, and substrate surface temperature. It is shown that large local geometry variations resulting in quadratic non-linearities in the evolution equation dominate pattern selection and stability at long time scales.</p>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41313-017-0005-1","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Theory","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s41313-017-0005-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a continuum model of ion-induced surface patterning. The model incorporates the atomic processes of sputtering, re-deposition and surface diffusion, and is shown to display the generic features of the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear and non-linear stability analyses of the evolution equation give estimates of the emerging pattern wavelength and spatial symmetry. The analytical theory is confirmed by numerical simulations of the evolution equation with the Fast Fourier Transform method, where we show the influence of the incident ion angle, flux, and substrate surface temperature. It is shown that large local geometry variations resulting in quadratic non-linearities in the evolution equation dominate pattern selection and stability at long time scales.

Abstract Image

离子诱导表面图案的稳定性和对称性
我们提出了一个离子诱导表面图案化的连续模型。该模型包含了原子溅射、再沉积和表面扩散过程,并显示了非线性动力学阻尼Kuramoto-Sivashinsky (KS)方程的一般特征。演化方程的线性和非线性稳定性分析给出了新出现的图案波长和空间对称性的估计。利用快速傅立叶变换方法对演化方程进行数值模拟,验证了解析理论的正确性,并给出了入射离子角、通量和衬底表面温度的影响。结果表明,大的局部几何变化导致进化方程的二次非线性,在长时间尺度上支配着模式选择和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Journal of Materials Science: Materials Theory publishes all areas of theoretical materials science and related computational methods. The scope covers mechanical, physical and chemical problems in metals and alloys, ceramics, polymers, functional and biological materials at all scales and addresses the structure, synthesis and properties of materials. Proposing novel theoretical concepts, models, and/or mathematical and computational formalisms to advance state-of-the-art technology is critical for submission to the Journal of Materials Science: Materials Theory. The journal highly encourages contributions focusing on data-driven research, materials informatics, and the integration of theory and data analysis as new ways to predict, design, and conceptualize materials behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信