D. Lascano, Cristobal Aljaro, E. Fages, S. Rojas‐Lema, J. Ivorra‐Martinez, N. Montanes
{"title":"A comparative study of mechanical properties of polylactide bio-composites with woven and non-woven jute reinforcements","authors":"D. Lascano, Cristobal Aljaro, E. Fages, S. Rojas‐Lema, J. Ivorra‐Martinez, N. Montanes","doi":"10.1680/jgrma.21.00060","DOIUrl":null,"url":null,"abstract":"The concern that has arisen in recent years over the excessive use of oil-based materials has made the development of new materials with low environmental impact imminent, in this context. In this study, environmentally friendly composites were obtained with a thermoplastic polylactide matrix (PLA), and jute fibers (fabrics and non-woven mats) as reinforcement. PLA/jute bio-composites were manufactured by thermocompression. The effect of the amount of jute fibers reinforcement (in the 30-50 wt.% range) on the tensile and flexural properties of these composites was analyzed, and the fiber-matrix interaction was assessed by scanning electron microscopy (SEM). The results show that thermocompression moulding is a simple technique to obtain high environmental efficiency bio-composites with high reinforcement loading (up to 50 wt.%). As expected, the tensile properties are directly related to the amount of fiber loading, as well as the directionality these fibers have in the composite. Mechanical performance is also highly dependent on fiber-matrix interactions. These bio-composites could be attractive as lightweight interior panels in automotive industry, case/covers in electric-electronics applications, shovels’ components in the wind energy industry, among others, due to their balanced mechanical properties, and the rather complex shapes that could be obtained by thermocompression.","PeriodicalId":12929,"journal":{"name":"Green Materials","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jgrma.21.00060","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
The concern that has arisen in recent years over the excessive use of oil-based materials has made the development of new materials with low environmental impact imminent, in this context. In this study, environmentally friendly composites were obtained with a thermoplastic polylactide matrix (PLA), and jute fibers (fabrics and non-woven mats) as reinforcement. PLA/jute bio-composites were manufactured by thermocompression. The effect of the amount of jute fibers reinforcement (in the 30-50 wt.% range) on the tensile and flexural properties of these composites was analyzed, and the fiber-matrix interaction was assessed by scanning electron microscopy (SEM). The results show that thermocompression moulding is a simple technique to obtain high environmental efficiency bio-composites with high reinforcement loading (up to 50 wt.%). As expected, the tensile properties are directly related to the amount of fiber loading, as well as the directionality these fibers have in the composite. Mechanical performance is also highly dependent on fiber-matrix interactions. These bio-composites could be attractive as lightweight interior panels in automotive industry, case/covers in electric-electronics applications, shovels’ components in the wind energy industry, among others, due to their balanced mechanical properties, and the rather complex shapes that could be obtained by thermocompression.
期刊介绍:
The focus of Green Materials relates to polymers and materials, with an emphasis on reducing the use of hazardous substances in the design, manufacture and application of products.