On the nonparametric estimation of the conditional hazard estimator in a single functional index

Q4 Mathematics
Abdelmalek Gagui, Abdelhak Chouaf
{"title":"On the nonparametric estimation of the conditional hazard estimator in a single functional index","authors":"Abdelmalek Gagui, Abdelhak Chouaf","doi":"10.2478/stattrans-2022-0018","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with the conditional hazard estimator of a real response where the variable is given a functional random variable (i.e it takes values in an infinite-dimensional space). Specifically, we focus on the functional index model. This approach offers a good compromise between nonparametric and parametric models. The principle aim is to prove the asymptotic normality of the proposed estimator under general conditions and in cases where the variables satisfy the strong mixing dependency. This was achieved by means of the kernel estimator method, based on a single-index structure. Finally, a simulation of our methodology shows that it is efficient for large sample sizes.","PeriodicalId":37985,"journal":{"name":"Statistics in Transition","volume":"23 1","pages":"89 - 105"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Transition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/stattrans-2022-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper deals with the conditional hazard estimator of a real response where the variable is given a functional random variable (i.e it takes values in an infinite-dimensional space). Specifically, we focus on the functional index model. This approach offers a good compromise between nonparametric and parametric models. The principle aim is to prove the asymptotic normality of the proposed estimator under general conditions and in cases where the variables satisfy the strong mixing dependency. This was achieved by means of the kernel estimator method, based on a single-index structure. Finally, a simulation of our methodology shows that it is efficient for large sample sizes.
单函数指标下条件危险估计量的非参数估计
摘要本文研究了给定一个泛函随机变量(即在无限维空间中取值)的实响应的条件危险估计量。具体来说,我们关注的是函数索引模型。这种方法在非参数模型和参数模型之间提供了一个很好的折衷。主要目的是证明在一般条件下和在变量满足强混合依赖的情况下所提出的估计量的渐近正态性。这是通过基于单索引结构的核估计器方法实现的。最后,我们的方法的模拟表明,它是有效的大样本量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics in Transition
Statistics in Transition Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊介绍: Statistics in Transition (SiT) is an international journal published jointly by the Polish Statistical Association (PTS) and the Central Statistical Office of Poland (CSO/GUS), which sponsors this publication. Launched in 1993, it was issued twice a year until 2006; since then it appears - under a slightly changed title, Statistics in Transition new series - three times a year; and after 2013 as a regular quarterly journal." The journal provides a forum for exchange of ideas and experience amongst members of international community of statisticians, data producers and users, including researchers, teachers, policy makers and the general public. Its initially dominating focus on statistical issues pertinent to transition from centrally planned to a market-oriented economy has gradually been extended to embracing statistical problems related to development and modernization of the system of public (official) statistics, in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信