Universal Digital Twin: Integration of national-scale energy systems and climate data

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Thomas R. Savage, J. Akroyd, S. Mosbach, Nenad B. Krdzavac, M. Hillman, M. Kraft
{"title":"Universal Digital Twin: Integration of national-scale energy systems and climate data","authors":"Thomas R. Savage, J. Akroyd, S. Mosbach, Nenad B. Krdzavac, M. Hillman, M. Kraft","doi":"10.1017/dce.2022.22","DOIUrl":null,"url":null,"abstract":"Abstract This article applies a knowledge graph-based approach to unify multiple heterogeneous domains inherent in climate and energy supply research. Existing approaches that rely on bespoke models with spreadsheet-type inputs are noninterpretable, static and make it difficult to combine existing domain specific models. The difficulties inherent to this approach become increasingly prevalent as energy supply models gain complexity while society pursues a net-zero future. In this work, we develop new ontologies to extend the World Avatar knowledge graph to represent gas grids, gas consumption statistics, and climate data. Using a combination of the new and existing ontologies we construct a Universal Digital Twin that integrates data describing the systems of interest and specifies respective links between domains. We represent the UK gas transmission system, and HadUK-Grid climate data set as linked data for the first time, formally associating the data with the statistical output areas used to report governmental administrative data throughout the UK. We demonstrate how computational agents contained within the World Avatar can operate on the knowledge graph, incorporating live feeds of data such as instantaneous gas flow rates, as well as parsing information into interpretable forms such as interactive visualizations. Through this approach, we enable a dynamic, interpretable, modular, and cross-domain representation of the UK that enables domain specific experts to contribute toward a national-scale digital twin.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2022.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract This article applies a knowledge graph-based approach to unify multiple heterogeneous domains inherent in climate and energy supply research. Existing approaches that rely on bespoke models with spreadsheet-type inputs are noninterpretable, static and make it difficult to combine existing domain specific models. The difficulties inherent to this approach become increasingly prevalent as energy supply models gain complexity while society pursues a net-zero future. In this work, we develop new ontologies to extend the World Avatar knowledge graph to represent gas grids, gas consumption statistics, and climate data. Using a combination of the new and existing ontologies we construct a Universal Digital Twin that integrates data describing the systems of interest and specifies respective links between domains. We represent the UK gas transmission system, and HadUK-Grid climate data set as linked data for the first time, formally associating the data with the statistical output areas used to report governmental administrative data throughout the UK. We demonstrate how computational agents contained within the World Avatar can operate on the knowledge graph, incorporating live feeds of data such as instantaneous gas flow rates, as well as parsing information into interpretable forms such as interactive visualizations. Through this approach, we enable a dynamic, interpretable, modular, and cross-domain representation of the UK that enables domain specific experts to contribute toward a national-scale digital twin.
通用数字孪生:整合国家规模的能源系统和气候数据
摘要本文应用基于知识图的方法来统一气候和能源供应研究中固有的多个异质领域。依赖于具有电子表格类型输入的定制模型的现有方法是不可解释的、静态的,并且很难组合现有的特定领域模型。随着社会追求净零未来,能源供应模型变得越来越复杂,这种方法固有的困难变得越来越普遍。在这项工作中,我们开发了新的本体论来扩展世界化身知识图,以表示天然气网格、天然气消耗统计数据和气候数据。使用新本体和现有本体的组合,我们构建了一个通用数字孪生,它集成了描述感兴趣系统的数据,并指定了域之间的相应链接。我们首次将英国天然气输送系统和HadUK电网的气候数据集作为链接数据,将数据与用于报告英国各地政府行政数据的统计输出区域正式关联。我们展示了世界化身中包含的计算代理如何在知识图上运行,将即时气体流速等实时数据馈送以及将信息解析为交互式可视化等可解释形式。通过这种方法,我们实现了英国的动态、可解释、模块化和跨领域表示,使特定领域的专家能够为国家规模的数字孪生做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
DataCentric Engineering
DataCentric Engineering Engineering-General Engineering
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信