About Rays, Dreadlocks and Periodic Points in Transcendental Dynamics

IF 0.2 Q4 MATHEMATICS
A. Benini
{"title":"About Rays, Dreadlocks and Periodic Points in Transcendental Dynamics","authors":"A. Benini","doi":"10.6092/ISSN.2240-2829/8168","DOIUrl":null,"url":null,"abstract":"We study some aspects of the iteration of an entire map f over the complex plane ℂ. In many settings in complex dynamics one can define periodic curves (called dynamic rays) in the dynamical plane and study their relation with periodic points. The most famous example of this kind of results is the Douady-Hubbard landing theorem for polynomial dynamics. We describe an analogous statements for transcendental maps which satisfy some growth conditions and a further generalization to general transcendental maps with bounded postsingular set, without any growth assumption. We also describe some implications for rigidity. The results described here are from a joint work with Lasse Rempe-Gillen.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"8 1","pages":"153-167"},"PeriodicalIF":0.2000,"publicationDate":"2018-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/8168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study some aspects of the iteration of an entire map f over the complex plane ℂ. In many settings in complex dynamics one can define periodic curves (called dynamic rays) in the dynamical plane and study their relation with periodic points. The most famous example of this kind of results is the Douady-Hubbard landing theorem for polynomial dynamics. We describe an analogous statements for transcendental maps which satisfy some growth conditions and a further generalization to general transcendental maps with bounded postsingular set, without any growth assumption. We also describe some implications for rigidity. The results described here are from a joint work with Lasse Rempe-Gillen.
关于超验动力学中的射线、脏辫和周期点
我们研究了复平面上整个映射f的迭代的一些方面。在复杂动力学的许多情况下,人们可以在动力平面上定义周期曲线(称为动态射线),并研究它们与周期点的关系。这类结果最著名的例子是多项式动力学的Douady-Hubbard着陆定理。我们描述了满足一些生长条件的超越映射的一个类似命题,并进一步推广到一般具有有界后奇异集的超越映射,没有任何生长假设。我们还描述了刚性的一些含义。这里描述的结果来自与Lasse Rempe-Gillen的联合研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信