Estimating linear response statistics using orthogonal polynomials: An rkhs formulation

IF 1.7 Q2 MATHEMATICS, APPLIED
He Zhang, J. Harlim, Xiantao Li
{"title":"Estimating linear response statistics using orthogonal polynomials: An rkhs formulation","authors":"He Zhang, J. Harlim, Xiantao Li","doi":"10.3934/fods.2020021","DOIUrl":null,"url":null,"abstract":"We study the problem of estimating linear response statistics under external perturbations using time series of unperturbed dynamics. Based on the fluctuation-dissipation theory, this problem is reformulated as an unsupervised learning task of estimating a density function. We consider a nonparametric density estimator formulated by the kernel embedding of distributions with \"Mercer-type\" kernels, constructed based on the classical orthogonal polynomials defined on non-compact domains. While the resulting representation is analogous to Polynomial Chaos Expansion (PCE), the connection to the reproducing kernel Hilbert space (RKHS) theory allows one to establish the uniform convergence of the estimator and to systematically address a practical question of identifying the PCE basis for a consistent estimation. We also provide practical conditions for the well-posedness of not only the estimator but also of the underlying response statistics. Finally, we provide a statistical error bound for the density estimation that accounts for the Monte-Carlo averaging over non-i.i.d time series and the biases due to a finite basis truncation. This error bound provides a means to understand the feasibility as well as limitation of the kernel embedding with Mercer-type kernels. Numerically, we verify the effectiveness of the estimator on two stochastic dynamics with known, yet, non-trivial equilibrium densities.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2020021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8

Abstract

We study the problem of estimating linear response statistics under external perturbations using time series of unperturbed dynamics. Based on the fluctuation-dissipation theory, this problem is reformulated as an unsupervised learning task of estimating a density function. We consider a nonparametric density estimator formulated by the kernel embedding of distributions with "Mercer-type" kernels, constructed based on the classical orthogonal polynomials defined on non-compact domains. While the resulting representation is analogous to Polynomial Chaos Expansion (PCE), the connection to the reproducing kernel Hilbert space (RKHS) theory allows one to establish the uniform convergence of the estimator and to systematically address a practical question of identifying the PCE basis for a consistent estimation. We also provide practical conditions for the well-posedness of not only the estimator but also of the underlying response statistics. Finally, we provide a statistical error bound for the density estimation that accounts for the Monte-Carlo averaging over non-i.i.d time series and the biases due to a finite basis truncation. This error bound provides a means to understand the feasibility as well as limitation of the kernel embedding with Mercer-type kernels. Numerically, we verify the effectiveness of the estimator on two stochastic dynamics with known, yet, non-trivial equilibrium densities.
估计线性响应统计使用正交多项式:一个rkhs公式
研究了利用无扰动动力学时间序列估计外部扰动下线性响应统计量的问题。基于涨落耗散理论,将该问题重新表述为一个估计密度函数的无监督学习任务。我们考虑了一个非参数密度估计量,它是基于定义在非紧域上的经典正交多项式,由具有“mercer型”核的分布的核嵌入来表示的。虽然结果表示类似于多项式混沌展开(PCE),但与再现核希尔伯特空间(RKHS)理论的联系允许人们建立估计量的一致收敛性,并系统地解决识别一致估计的PCE基础的实际问题。我们还为估计量和底层响应统计量的适定性提供了实际条件。最后,我们为密度估计提供了一个统计误差界,它解释了非i -i上的蒙特卡罗平均。D时间序列和有限基截断引起的偏差。这个错误界为理解用mercer型核嵌入核的可行性和局限性提供了一种方法。在数值上,我们验证了估计器在两个随机动力学上的有效性,这些随机动力学具有已知的非平凡平衡密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信