Dominated Pair Degree Sum Conditions of Supereulerian Digraphs

Pub Date : 2022-11-18 DOI:10.7151/dmgt.2476
Changchang Dong, J. Meng, Juan Liu
{"title":"Dominated Pair Degree Sum Conditions of Supereulerian Digraphs","authors":"Changchang Dong, J. Meng, Juan Liu","doi":"10.7151/dmgt.2476","DOIUrl":null,"url":null,"abstract":"Abstract A digraph D is supereulerian if D contains a spanning eulerian subdigraph. In this paper, we propose the following problem: is there an integer t with 0 ≤ t ≤ n − 3 so that any strong digraph with n vertices satisfying either both d(u) ≥ n − 1 + t and d(v) ≥ n − 2 − t or both d(u) ≥ n − 2 − t and d(v) ≥ n − 1 + t, for any pair of dominated or dominating nonadjacent vertices {u, v}, is supereulerian? We prove the cases when t = 0, t = n − 4 and t = n − 3. Moreover, we show that if a strong digraph D with n vertices satisfies min{d+(u)+d−(v), d−(u)+d+(v)} ≥ n−1 for any pair of dominated or dominating nonadjacent vertices {u, v} of D, then D is supereulerian.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A digraph D is supereulerian if D contains a spanning eulerian subdigraph. In this paper, we propose the following problem: is there an integer t with 0 ≤ t ≤ n − 3 so that any strong digraph with n vertices satisfying either both d(u) ≥ n − 1 + t and d(v) ≥ n − 2 − t or both d(u) ≥ n − 2 − t and d(v) ≥ n − 1 + t, for any pair of dominated or dominating nonadjacent vertices {u, v}, is supereulerian? We prove the cases when t = 0, t = n − 4 and t = n − 3. Moreover, we show that if a strong digraph D with n vertices satisfies min{d+(u)+d−(v), d−(u)+d+(v)} ≥ n−1 for any pair of dominated or dominating nonadjacent vertices {u, v} of D, then D is supereulerian.
分享
查看原文
超欧拉有向图的控制对度和条件
如果有向图D包含一个生成欧拉子图,则D是超欧拉图。在本文中,我们提出了以下问题:是否存在一个0≤t≤n−3的整数t,使得任何有n个顶点的强有向图既满足d(u)≥n−1 + t又满足d(v)≥n−2 - t或者d(u)≥n−2 - t又满足d(v)≥n−1 + t,对于任意支配或支配的非相邻顶点{u, v},都是超欧拉图?我们证明了t = 0, t = n - 4和t = n - 3的情况。此外,我们证明了如果一个有n个顶点的强有向图D满足min{D +(u)+ D−(v), D−(u)+ D +(v)}≥n−1,对于D的任意对支配或支配的非相邻顶点{u, v},则D是超欧拉的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信