{"title":"Hidden equations of risk critical thresholds","authors":"V. Ejov, J. Filar, Zhihao Qiao","doi":"10.1080/15326349.2022.2108452","DOIUrl":null,"url":null,"abstract":"Abstract We consider the problem of parametric sensitivity of a particular characterization of risk, with respect to a threshold parameter Such threshold risk is modeled as the probability of a perturbed function of a random variable falling below 0. We demonstrate that for polynomial and rational functions of that random variable there exist at most finitely many risk critical points. The latter are those special values of the threshold parameter for which rate of change of risk is unbounded as δ approaches them. Under weak conditions, we characterize candidates for risk critical points as zeroes of either the discriminant of a relevant perturbed polynomial, or of its leading coefficient, or both. Thus the equations that need to be solved are themselves polynomial equations in δ that exploit the algebraic properties of the underlying polynomial or rational functions. We name these important equations as” hidden equations of risk critical thresholds”.","PeriodicalId":21970,"journal":{"name":"Stochastic Models","volume":"39 1","pages":"383 - 413"},"PeriodicalIF":0.5000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2022.2108452","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We consider the problem of parametric sensitivity of a particular characterization of risk, with respect to a threshold parameter Such threshold risk is modeled as the probability of a perturbed function of a random variable falling below 0. We demonstrate that for polynomial and rational functions of that random variable there exist at most finitely many risk critical points. The latter are those special values of the threshold parameter for which rate of change of risk is unbounded as δ approaches them. Under weak conditions, we characterize candidates for risk critical points as zeroes of either the discriminant of a relevant perturbed polynomial, or of its leading coefficient, or both. Thus the equations that need to be solved are themselves polynomial equations in δ that exploit the algebraic properties of the underlying polynomial or rational functions. We name these important equations as” hidden equations of risk critical thresholds”.
期刊介绍:
Stochastic Models publishes papers discussing the theory and applications of probability as they arise in the modeling of phenomena in the natural sciences, social sciences and technology. It presents novel contributions to mathematical theory, using structural, analytical, algorithmic or experimental approaches. In an interdisciplinary context, it discusses practical applications of stochastic models to diverse areas such as biology, computer science, telecommunications modeling, inventories and dams, reliability, storage, queueing theory, mathematical finance and operations research.